Homologous desensitization of serotonin 5-HT2 receptor-stimulated intracellular calcium mobilization in C6BU-1 glioma cells via a mechanism involving a calmodulin pathway. 1993

A Kagaya, and M Mikuni, and S Muraoka, and K Saitoh, and T Ogawa, and H Shinno, and S Yamawaki, and K Takahashi
Division of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.

Serotonin 5-HT2 receptor-mediated intracellular Ca2+ mobilization was investigated in rat glioma C6BU-1 cells. The receptors became desensitized after previous exposure to 5-HT in a time- and concentration-dependent manner. The desensitization of 5-HT2 receptor-mediated intracellular signaling appeared to be homologous because previous exposure to 5-HT did not alter the response to other transmitters such as thrombin or isoproterenol and because previous exposure to thrombin or isoproterenol did not diminish the response to 5-HT. The desensitization induced by pretreatment with 5-HT was potently prevented by the naphthalenesulfonamide derivative W-7, a calmodulin antagonist, when it was cosupplied with 5-HT. Furthermore, the preventive effect of W-7 was greater than that of W-5, a weak analogue of W-7, and than that of H-7, a nonselective inhibitor of protein kinases. These results suggest that 5-HT2 receptor-mediated Ca2+ mobilization can be desensitized homologously after prolonged exposure to 5-HT in a calmodulin-dependent manner in rat glioma C6BU-1 cells.

UI MeSH Term Description Entries
D007425 Intracellular Membranes Thin structures that encapsulate subcellular structures or ORGANELLES in EUKARYOTIC CELLS. They include a variety of membranes associated with the CELL NUCLEUS; the MITOCHONDRIA; the GOLGI APPARATUS; the ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES. Membranes, Intracellular,Intracellular Membrane,Membrane, Intracellular
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D011985 Receptors, Serotonin Cell-surface proteins that bind SEROTONIN and trigger intracellular changes which influence the behavior of cells. Several types of serotonin receptors have been recognized which differ in their pharmacology, molecular biology, and mode of action. 5-HT Receptor,5-HT Receptors,5-Hydroxytryptamine Receptor,5-Hydroxytryptamine Receptors,Receptors, Tryptamine,Serotonin Receptor,Serotonin Receptors,Tryptamine Receptor,Tryptamine Receptors,Receptors, 5-HT,Receptors, 5-Hydroxytryptamine,5 HT Receptor,5 HT Receptors,5 Hydroxytryptamine Receptor,5 Hydroxytryptamine Receptors,Receptor, 5-HT,Receptor, 5-Hydroxytryptamine,Receptor, Serotonin,Receptor, Tryptamine,Receptors, 5 HT,Receptors, 5 Hydroxytryptamine
D002147 Calmodulin A heat-stable, low-molecular-weight activator protein found mainly in the brain and heart. The binding of calcium ions to this protein allows this protein to bind to cyclic nucleotide phosphodiesterases and to adenyl cyclase with subsequent activation. Thereby this protein modulates cyclic AMP and cyclic GMP levels. Calcium-Dependent Activator Protein,Calcium-Dependent Regulator,Bovine Activator Protein,Cyclic AMP-Phosphodiesterase Activator,Phosphodiesterase Activating Factor,Phosphodiesterase Activator Protein,Phosphodiesterase Protein Activator,Regulator, Calcium-Dependent,AMP-Phosphodiesterase Activator, Cyclic,Activating Factor, Phosphodiesterase,Activator Protein, Bovine,Activator Protein, Calcium-Dependent,Activator Protein, Phosphodiesterase,Activator, Cyclic AMP-Phosphodiesterase,Activator, Phosphodiesterase Protein,Calcium Dependent Activator Protein,Calcium Dependent Regulator,Cyclic AMP Phosphodiesterase Activator,Factor, Phosphodiesterase Activating,Protein Activator, Phosphodiesterase,Protein, Bovine Activator,Protein, Calcium-Dependent Activator,Protein, Phosphodiesterase Activator,Regulator, Calcium Dependent
D005910 Glioma Benign and malignant central nervous system neoplasms derived from glial cells (i.e., astrocytes, oligodendrocytes, and ependymocytes). Astrocytes may give rise to astrocytomas (ASTROCYTOMA) or glioblastoma multiforme (see GLIOBLASTOMA). Oligodendrocytes give rise to oligodendrogliomas (OLIGODENDROGLIOMA) and ependymocytes may undergo transformation to become EPENDYMOMA; CHOROID PLEXUS NEOPLASMS; or colloid cysts of the third ventricle. (From Escourolle et al., Manual of Basic Neuropathology, 2nd ed, p21) Glial Cell Tumors,Malignant Glioma,Mixed Glioma,Glial Cell Tumor,Glioma, Malignant,Glioma, Mixed,Gliomas,Gliomas, Malignant,Gliomas, Mixed,Malignant Gliomas,Mixed Gliomas,Tumor, Glial Cell,Tumors, Glial Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic
D012701 Serotonin A biochemical messenger and regulator, synthesized from the essential amino acid L-TRYPTOPHAN. In humans it is found primarily in the central nervous system, gastrointestinal tract, and blood platelets. Serotonin mediates several important physiological functions including neurotransmission, gastrointestinal motility, hemostasis, and cardiovascular integrity. Multiple receptor families (RECEPTORS, SEROTONIN) explain the broad physiological actions and distribution of this biochemical mediator. 5-HT,5-Hydroxytryptamine,3-(2-Aminoethyl)-1H-indol-5-ol,Enteramine,Hippophaine,Hydroxytryptamine,5 Hydroxytryptamine
D013449 Sulfonamides A group of compounds that contain the structure SO2NH2. Sulfonamide,Sulfonamide Mixture,Sulfonamide Mixtures,Mixture, Sulfonamide,Mixtures, Sulfonamide
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured

Related Publications

A Kagaya, and M Mikuni, and S Muraoka, and K Saitoh, and T Ogawa, and H Shinno, and S Yamawaki, and K Takahashi
October 1995, Neuroscience letters,
A Kagaya, and M Mikuni, and S Muraoka, and K Saitoh, and T Ogawa, and H Shinno, and S Yamawaki, and K Takahashi
June 1995, Journal of neurochemistry,
A Kagaya, and M Mikuni, and S Muraoka, and K Saitoh, and T Ogawa, and H Shinno, and S Yamawaki, and K Takahashi
December 1993, Brain research,
A Kagaya, and M Mikuni, and S Muraoka, and K Saitoh, and T Ogawa, and H Shinno, and S Yamawaki, and K Takahashi
June 1995, Brain research,
A Kagaya, and M Mikuni, and S Muraoka, and K Saitoh, and T Ogawa, and H Shinno, and S Yamawaki, and K Takahashi
July 1993, European journal of pharmacology,
A Kagaya, and M Mikuni, and S Muraoka, and K Saitoh, and T Ogawa, and H Shinno, and S Yamawaki, and K Takahashi
January 1996, Progress in neuro-psychopharmacology & biological psychiatry,
A Kagaya, and M Mikuni, and S Muraoka, and K Saitoh, and T Ogawa, and H Shinno, and S Yamawaki, and K Takahashi
January 2000, Journal of neural transmission (Vienna, Austria : 1996),
A Kagaya, and M Mikuni, and S Muraoka, and K Saitoh, and T Ogawa, and H Shinno, and S Yamawaki, and K Takahashi
August 1995, Psychiatry research,
A Kagaya, and M Mikuni, and S Muraoka, and K Saitoh, and T Ogawa, and H Shinno, and S Yamawaki, and K Takahashi
March 1996, Blood coagulation & fibrinolysis : an international journal in haemostasis and thrombosis,
A Kagaya, and M Mikuni, and S Muraoka, and K Saitoh, and T Ogawa, and H Shinno, and S Yamawaki, and K Takahashi
October 1998, Journal of neurochemistry,
Copied contents to your clipboard!