Intrarenal distribution of inorganic mercury and albumin after coadministration. 1993

R K Zalups, and D W Barfuss
Division of Basic Medical Sciences, Mercer University School of Medicine, Macon, Georgia 31207.

The renal disposition and the intrarenal distribution of albumin and mercury were studied simultaneously in rats co-injected with a 0.5-mumol/kg dose of albumin and a 0.25-mumol/kg dose of inorganic mercury at 2, 5, 30, and 180 min after injection. These studies were carried out to test the hypothesis that one of the mechanisms involved in the renal tubular uptake of inorganic mercury is cotransport with albumin. By the end of the first 2 min after injection, the ratio of inorganic mercury to albumin in the renal cortex and outer stripe of the outer medulla was approximately 2.6 and 1.6, respectively. Both the cortex and outer stripe contain segments of the proximal tubule, and it is these segments that have been shown to be principally involved in the renal tubular uptake of both albumin and inorganic mercury. The ratio increased slightly in these two zones after 5 and 20 min after injection. These data demonstrate that there is a relatively close relationship in the renal content of inorganic mercury and albumin during the early minutes after coinjection of inorganic mercury and albumin. However, the ratios are significantly greater than the ratio of inorganic mercury to albumin in the injection solution, which was 0.5. After 180 min following co-injection, the ratio increased to about 38 in the cortex and 15 in the outer stripe. This increase in the ratio is probably related to the metabolism of albumin. Based on the ratios of inorganic mercury to albumin in the renal cortex and outer stripe of the outer medulla, it appears that some proximal tubular uptake of inorganic mercury occurs by mechanisms other than endocytotic cotransport of inorganic mercury with albumin. However, since the ratios were small during the early times after injection, cotransport of inorganic mercury with albumin cannot be excluded as one of the mechanisms involved in the proximal tubular uptake of inorganic mercury.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D008628 Mercury A silver metallic element that exists as a liquid at room temperature. It has the atomic symbol Hg (from hydrargyrum, liquid silver), atomic number 80, and atomic weight 200.59. Mercury is used in many industrial applications and its salts have been employed therapeutically as purgatives, antisyphilitics, disinfectants, and astringents. It can be absorbed through the skin and mucous membranes which leads to MERCURY POISONING. Because of its toxicity, the clinical use of mercury and mercurials is diminishing.
D010949 Plasma The residual portion of BLOOD that is left after removal of BLOOD CELLS by CENTRIFUGATION without prior BLOOD COAGULATION. Blood Plasma,Fresh Frozen Plasma,Blood Plasmas,Fresh Frozen Plasmas,Frozen Plasma, Fresh,Frozen Plasmas, Fresh,Plasma, Blood,Plasma, Fresh Frozen,Plasmas,Plasmas, Blood,Plasmas, Fresh Frozen
D000418 Albumins Water-soluble proteins found in egg whites, blood, lymph, and other tissues and fluids. They coagulate upon heating. Albumin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

R K Zalups, and D W Barfuss
September 1979, Toxicology and applied pharmacology,
R K Zalups, and D W Barfuss
January 1975, Pflugers Archiv : European journal of physiology,
R K Zalups, and D W Barfuss
May 1968, Giornale di clinica medica,
R K Zalups, and D W Barfuss
July 1975, Pflugers Archiv : European journal of physiology,
R K Zalups, and D W Barfuss
September 1968, Toxicology and applied pharmacology,
R K Zalups, and D W Barfuss
January 2006, Journal of applied toxicology : JAT,
Copied contents to your clipboard!