Regulation of human T cell receptor beta gene expression by Ets-1. 1993

D Wotton, and H M Prosser, and M J Owen
Imperial Cancer Research Fund, London, UK.

Expression of the human TcR beta gene is controlled by an enhancer located 6kb 3' to the C beta 2 gene segment. The activity of this enhancer has been shown to be inducible with phorbol esters. Within the enhancer the beta E2 element is responsible for the major part of the inducibility, multimerised beta E2 alone is also highly phorbol ester inducible. The beta E2 element contains a consensus ets-binding site as well as a core motif, and we have shown that the beta E2 ets site binds both Ets-1 and Ets-2 in vitro and that purified core binding factor (CBF) can bind the core site present in beta E2. Mutations which specifically disrupt Ets-1 and Ets-2 binding abolish inducibility as well as reducing activity, whereas mutants which cannot bind CBF have only reduced basal activity. In Jurkat, which has a high level of endogenous Ets-1, multimerized beta E2 was inactive unless treated with PMA. However when transfected into cells with no detectable Ets-1 the beta E2 multimer was highly active in the absence of PMA. Co-transfection of an Ets-1 expression construct with the full enhancer into Jurkat cells led to a repression of enhancer activity, suggesting a repressive role for Ets-1. Co-transfection of Ets-1 was also able to repress strongly the activity of the beta E2 multimer. Repression of activity from both the full enhancer construct and the beta E2 multimer was most dramatic in the presence of PMA, suggesting that Ets-1 could block TcR beta activation. The Ets-1 expression construct used transactivated the HTLV-1 LTR which has also been shown to bind Ets-1. The repression of beta E2 activity by Ets-1 appears therefore to be specific. In conclusion, the combination of ets and core sites in beta E2 constitutes a novel inducible element, which is specifically transrepressed by Ets-1.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D011518 Proto-Oncogene Proteins Products of proto-oncogenes. Normally they do not have oncogenic or transforming properties, but are involved in the regulation or differentiation of cell growth. They often have protein kinase activity. Cellular Proto-Oncogene Proteins,c-onc Proteins,Proto Oncogene Proteins, Cellular,Proto-Oncogene Products, Cellular,Cellular Proto Oncogene Proteins,Cellular Proto-Oncogene Products,Proto Oncogene Products, Cellular,Proto Oncogene Proteins,Proto-Oncogene Proteins, Cellular,c onc Proteins
D002051 Burkitt Lymphoma A form of undifferentiated malignant LYMPHOMA usually found in central Africa, but also reported in other parts of the world. It is commonly manifested as a large osteolytic lesion in the jaw or as an abdominal mass. B-cell antigens are expressed on the immature cells that make up the tumor in virtually all cases of Burkitt lymphoma. The Epstein-Barr virus (HERPESVIRUS 4, HUMAN) has been isolated from Burkitt lymphoma cases in Africa and it is implicated as the causative agent in these cases; however, most non-African cases are EBV-negative. African Lymphoma,Burkitt Cell Leukemia,Burkitt Tumor,Lymphoma, Burkitt,Burkitt Leukemia,Burkitt's Leukemia,Burkitt's Lymphoma,Burkitt's Tumor,Leukemia, Lymphoblastic, Burkitt-Type,Leukemia, Lymphocytic, L3,Lymphocytic Leukemia, L3,Burkitts Leukemia,Burkitts Lymphoma,Burkitts Tumor,L3 Lymphocytic Leukemia,L3 Lymphocytic Leukemias,Leukemia, Burkitt,Leukemia, Burkitt Cell,Leukemia, Burkitt's,Leukemia, L3 Lymphocytic,Lymphoma, African,Lymphoma, Burkitt's,Tumor, Burkitt,Tumor, Burkitt's
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D013755 Tetradecanoylphorbol Acetate A phorbol ester found in CROTON OIL with very effective tumor promoting activity. It stimulates the synthesis of both DNA and RNA. Phorbol Myristate Acetate,12-Myristoyl-13-acetylphorbol,12-O-Tetradecanoyl Phorbol 13-Acetate,Tetradecanoylphorbol Acetate, 4a alpha-Isomer,12 Myristoyl 13 acetylphorbol,12 O Tetradecanoyl Phorbol 13 Acetate,13-Acetate, 12-O-Tetradecanoyl Phorbol,Acetate, Phorbol Myristate,Acetate, Tetradecanoylphorbol,Myristate Acetate, Phorbol,Phorbol 13-Acetate, 12-O-Tetradecanoyl,Tetradecanoylphorbol Acetate, 4a alpha Isomer
D014157 Transcription Factors Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process. Transcription Factor,Factor, Transcription,Factors, Transcription
D014162 Transfection The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES. Transfections

Related Publications

D Wotton, and H M Prosser, and M J Owen
October 1994, Molecular reproduction and development,
D Wotton, and H M Prosser, and M J Owen
July 1985, Proceedings of the National Academy of Sciences of the United States of America,
D Wotton, and H M Prosser, and M J Owen
April 2006, Journal of immunology (Baltimore, Md. : 1950),
D Wotton, and H M Prosser, and M J Owen
November 1990, Science (New York, N.Y.),
D Wotton, and H M Prosser, and M J Owen
April 2005, Biochemical and biophysical research communications,
D Wotton, and H M Prosser, and M J Owen
August 1996, The Journal of experimental medicine,
D Wotton, and H M Prosser, and M J Owen
January 1985, Nature,
D Wotton, and H M Prosser, and M J Owen
May 2001, Current protocols in immunology,
D Wotton, and H M Prosser, and M J Owen
May 2003, International immunology,
Copied contents to your clipboard!