Beta-VLDL in hepatic lipase deficiency induces apoE-mediated cholesterol ester accumulation in macrophages. 1993

M W Huff, and C G Sawyez, and P W Connelly, and G F Maguire, and J A Little, and R A Hegele
Department of Medicine, University of Western Ontario, Robarts Research Institute, London, Ontario, Canada.

Hepatic lipase-deficient subjects in the Ontario kindred are compound heterozygotes for hepatic lipase mutations (Ser267-->Phe and Thr383-->Met). Cholesteryl ester-rich beta-very-low-density lipoprotein (beta-VLDL) accumulates in plasma and such subjects have premature atherosclerosis. To determine a possible mechanism, we hypothesized that hepatic lipase-deficient beta-VLDL, homozygous for apolipoprotein (apo) E3, would cause cholesteryl ester accumulation and foam cell formation in macrophages. beta-VLDL and pre-beta-VLDL were isolated by Pevikon electrophoresis and incubated with J774 macrophages, cells that do not secrete apoE. beta-VLDL increased cellular cholesteryl ester content 13-fold, whereas pre-beta-VLDL increased cholesteryl ester sevenfold. beta-VLDL increased acyl CoA:cholesterol acyltransferase activity fourfold (measured as [14C]oleate incorporation into cholesteryl ester). Preincubation of hepatic lipase-deficient beta-VLDL with the anti-apoE monoclonal antibody 1D7, which inhibits binding of apoE to low-density lipoprotein receptors, inhibited cellular cholesteryl ester accumulation by 75%, whereas the anti-apoB blocking monoclonal antibody 5E11 failed to inhibit cellular cholesteryl ester accumulation. In contrast to hepatic lipase deficiency, beta-VLDL from type III subjects (E2/E2) failed to increase cellular cholesteryl ester or acyl CoA:cholesterol acyltransferase more than 1.5-fold. Thus, hepatic lipase-deficient beta-VLDL readily induces cholesteryl ester accumulation in J774 macrophages, a process mediated by functional apoE3. This may explain the premature atherosclerosis observed in this kindred.

UI MeSH Term Description Entries
D008049 Lipase An enzyme of the hydrolase class that catalyzes the reaction of triacylglycerol and water to yield diacylglycerol and a fatty acid anion. It is produced by glands on the tongue and by the pancreas and initiates the digestion of dietary fats. (From Dorland, 27th ed) EC 3.1.1.3. Triacylglycerol Lipase,Tributyrinase,Triglyceride Lipase,Acid Lipase,Acid Lipase A,Acid Lipase B,Acid Lipase I,Acid Lipase II,Exolipase,Monoester Lipase,Triacylglycerol Hydrolase,Triglyceridase,Triolean Hydrolase,Hydrolase, Triacylglycerol,Hydrolase, Triolean,Lipase A, Acid,Lipase B, Acid,Lipase I, Acid,Lipase II, Acid,Lipase, Acid,Lipase, Monoester,Lipase, Triglyceride
D008079 Lipoproteins, VLDL A class of lipoproteins of very light (0.93-1.006 g/ml) large size (30-80 nm) particles with a core composed mainly of TRIGLYCERIDES and a surface monolayer of PHOSPHOLIPIDS and CHOLESTEROL into which are imbedded the apolipoproteins B, E, and C. VLDL facilitates the transport of endogenously made triglycerides to extrahepatic tissues. As triglycerides and Apo C are removed, VLDL is converted to INTERMEDIATE-DENSITY LIPOPROTEINS, then to LOW-DENSITY LIPOPROTEINS from which cholesterol is delivered to the extrahepatic tissues. Pre-beta-Lipoprotein,Prebeta-Lipoprotein,Prebeta-Lipoproteins,Very Low Density Lipoprotein,Very-Low-Density Lipoprotein,Very-Low-Density Lipoproteins,Lipoprotein VLDL II,Lipoproteins, VLDL I,Lipoproteins, VLDL III,Lipoproteins, VLDL1,Lipoproteins, VLDL2,Lipoproteins, VLDL3,Pre-beta-Lipoproteins,Lipoprotein, Very-Low-Density,Lipoproteins, Very-Low-Density,Pre beta Lipoprotein,Pre beta Lipoproteins,Prebeta Lipoprotein,Prebeta Lipoproteins,VLDL Lipoproteins,VLDL1 Lipoproteins,VLDL2 Lipoproteins,VLDL3 Lipoproteins,Very Low Density Lipoproteins
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D011973 Receptors, LDL Receptors on the plasma membrane of nonhepatic cells that specifically bind LDL. The receptors are localized in specialized regions called coated pits. Hypercholesteremia is caused by an allelic genetic defect of three types: 1, receptors do not bind to LDL; 2, there is reduced binding of LDL; and 3, there is normal binding but no internalization of LDL. In consequence, entry of cholesterol esters into the cell is impaired and the intracellular feedback by cholesterol on 3-hydroxy-3-methylglutaryl CoA reductase is lacking. LDL Receptors,Lipoprotein LDL Receptors,Receptors, Low Density Lipoprotein,LDL Receptor,LDL Receptors, Lipoprotein,Low Density Lipoprotein Receptor,Low Density Lipoprotein Receptors,Receptors, Lipoprotein, LDL,Receptor, LDL,Receptors, Lipoprotein LDL
D002788 Cholesterol Esters Fatty acid esters of cholesterol which constitute about two-thirds of the cholesterol in the plasma. The accumulation of cholesterol esters in the arterial intima is a characteristic feature of atherosclerosis. Cholesterol Ester,Cholesteryl Ester,Cholesteryl Esters,Ester, Cholesterol,Ester, Cholesteryl,Esters, Cholesterol,Esters, Cholesteryl
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001057 Apolipoproteins E A class of protein components which can be found in several lipoproteins including HIGH-DENSITY LIPOPROTEINS; VERY-LOW-DENSITY LIPOPROTEINS; and CHYLOMICRONS. Synthesized in most organs, Apo E is important in the global transport of lipids and cholesterol throughout the body. Apo E is also a ligand for LDL receptors (RECEPTORS, LDL) that mediates the binding, internalization, and catabolism of lipoprotein particles in cells. There are several allelic isoforms (such as E2, E3, and E4). Deficiency or defects in Apo E are causes of HYPERLIPOPROTEINEMIA TYPE III. Apo-E,Apo E,Apo E Isoproteins,ApoE,Apolipoprotein E Isoproteins,Apoprotein (E),Apoproteins E,Isoproteins, Apo E,Isoproteins, Apolipoprotein E

Related Publications

M W Huff, and C G Sawyez, and P W Connelly, and G F Maguire, and J A Little, and R A Hegele
January 1994, Heart and vessels,
M W Huff, and C G Sawyez, and P W Connelly, and G F Maguire, and J A Little, and R A Hegele
October 1992, Arteriosclerosis and thrombosis : a journal of vascular biology,
M W Huff, and C G Sawyez, and P W Connelly, and G F Maguire, and J A Little, and R A Hegele
May 2017, Oncotarget,
M W Huff, and C G Sawyez, and P W Connelly, and G F Maguire, and J A Little, and R A Hegele
April 1993, Journal of lipid research,
M W Huff, and C G Sawyez, and P W Connelly, and G F Maguire, and J A Little, and R A Hegele
August 1992, Atherosclerosis,
M W Huff, and C G Sawyez, and P W Connelly, and G F Maguire, and J A Little, and R A Hegele
November 2005, The Journal of biological chemistry,
M W Huff, and C G Sawyez, and P W Connelly, and G F Maguire, and J A Little, and R A Hegele
July 1988, Biochemical and biophysical research communications,
M W Huff, and C G Sawyez, and P W Connelly, and G F Maguire, and J A Little, and R A Hegele
May 1999, Arteriosclerosis, thrombosis, and vascular biology,
M W Huff, and C G Sawyez, and P W Connelly, and G F Maguire, and J A Little, and R A Hegele
April 1997, Journal of lipid research,
M W Huff, and C G Sawyez, and P W Connelly, and G F Maguire, and J A Little, and R A Hegele
January 1989, Arteriosclerosis (Dallas, Tex.),
Copied contents to your clipboard!