Distribution of intracardiac neurones and nerve terminals that contain a marker for nitric oxide, NADPH-diaphorase, in the guinea-pig heart. 1993

K Tanaka, and C J Hassall, and G Burnstock
Department of Anatomy and Developmental Biology, University College London, UK.

There is strong evidence that NADPH-diaphorase can be used as a marker for neurones that employ nitric oxide as a messenger molecule. In the present study, the NADPH-diaphorase activity of intracardiac neurones and nerve terminals in whole-mount stretch preparations and sections of the newborn and adult guinea-pig atria and interatrial septum has been examined histochemically. Together with epicardial, endothelial and endocardial cells, which displayed some NADPH-diaphorase staining, a subpopulation of intracardiac neurones exhibited moderate-heavy labelling for NADPH-diaphorase, while the majority of neurones were only lightly stained or negative. Intracardiac ganglia containing positive neuronal cell bodies were located between the epicardial cells and atrial myocytes in four main regions: in association with the superior and inferior vena cavae, the points of entry of the pulmonary veins, and within the interatrial septum. Nerve terminals exhibiting NADPH-diaphorase activity were seen throughout the atrial tissue, forming basket-like endings around intracardiac neuronal cell bodies; varicose terminals were also observed on atrial myocytes and other non-neuronal structures. A proportion of the nerve fibres was clearly of intrinsic origin, other terminals may well have originated from neuronal cell bodies present outside the heart.

UI MeSH Term Description Entries
D008297 Male Males
D009252 NADPH Dehydrogenase A flavoprotein that reversibly oxidizes NADPH to NADP and a reduced acceptor. EC 1.6.99.1. NADP Dehydrogenase,NADP Diaphorase,NADPH Diaphorase,Old Yellow Enzyme,TPN Diaphorase,Dehydrogenase, NADP,Dehydrogenase, NADPH,Diaphorase, NADP,Diaphorase, NADPH,Diaphorase, TPN,Enzyme, Old Yellow
D009411 Nerve Endings Branch-like terminations of NERVE FIBERS, sensory or motor NEURONS. Endings of sensory neurons are the beginnings of afferent pathway to the CENTRAL NERVOUS SYSTEM. Endings of motor neurons are the terminals of axons at the muscle cells. Nerve endings which release neurotransmitters are called PRESYNAPTIC TERMINALS. Ending, Nerve,Endings, Nerve,Nerve Ending
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009569 Nitric Oxide A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP. Endogenous Nitrate Vasodilator,Mononitrogen Monoxide,Nitric Oxide, Endothelium-Derived,Nitrogen Monoxide,Endothelium-Derived Nitric Oxide,Monoxide, Mononitrogen,Monoxide, Nitrogen,Nitrate Vasodilator, Endogenous,Nitric Oxide, Endothelium Derived,Oxide, Nitric,Vasodilator, Endogenous Nitrate
D005260 Female Females
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D006321 Heart The hollow, muscular organ that maintains the circulation of the blood. Hearts
D006325 Heart Atria The chambers of the heart, to which the BLOOD returns from the circulation. Heart Atrium,Left Atrium,Right Atrium,Atria, Heart,Atrium, Heart,Atrium, Left,Atrium, Right
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

K Tanaka, and C J Hassall, and G Burnstock
November 1994, American journal of respiratory and critical care medicine,
K Tanaka, and C J Hassall, and G Burnstock
August 1989, Neuroscience letters,
K Tanaka, and C J Hassall, and G Burnstock
March 1997, Neuroreport,
K Tanaka, and C J Hassall, and G Burnstock
January 1997, Journal fur Hirnforschung,
K Tanaka, and C J Hassall, and G Burnstock
January 1993, Neuroreport,
K Tanaka, and C J Hassall, and G Burnstock
April 1992, Neuroreport,
K Tanaka, and C J Hassall, and G Burnstock
January 1998, Acta oto-laryngologica. Supplementum,
Copied contents to your clipboard!