Localization of sulfated glycoprotein-2/clusterin mRNA in the rat brain by in situ hybridization. 1993

M Danik, and J G Chabot, and D Hassan-Gonzalez, and M Suh, and R Quirion
Faculté des Etudes Supérieures, Université de Montréal, Québec, Canada.

Sulfated glycoprotein-2 (SGP-2) gene expression seems to be constitutively expressed in a variety of tissues and organs, although levels of expression vary widely from one tissue to the other. SGP-2, also known as clusterin, has been reported to be expressed in the central nervous system (CNS). Some possible roles for brain SGP-2 have been postulated. In order to provide a substrate for a better understanding of the functions of this glycoprotein in the CNS, we investigated the detailed anatomical and cellular distribution of SGP-2 mRNA in the adult rat brain as well as the variation in its cellular expression after excitotoxin lesion. Transcripts for SGP-2 were found to be distributed throughout the rat CNS, although regional differences in their prevalence were readily observed. The ependymal lining of the ventricles showed the highest level of expression followed by various gray matter areas, some of which contained very intensively labeled cells. These cells were mostly found among several hypothalamic and brainstem nuclei, the habenular complex, as well as in the ventral horn of the spinal cord, which displayed striking hybridization signals over motoneurons. Occasional cells expressing high levels of SGP-2 transcripts were found in fiber tracts. Highly SGP-2 mRNA-positive resting glial cells were mainly located near the glial limitans and blood vessels. Two areas of relatively low constitutive SGP-2 mRNA expression are shown to produce strong hybridization signals 10 days after the local administration of the excitotoxin kainic acid. This overexpression of SGP-2 transcripts appears to involve GFAP-positive cells. Taken together, these results indicate that in the intact adult rat CNS, various cell populations, including neurons, constitutively express SGP-2 transcripts, whereas in the injured brain, reactive astrocytes become the major producers.

UI MeSH Term Description Entries
D007031 Hypothalamus Ventral part of the DIENCEPHALON extending from the region of the OPTIC CHIASM to the caudal border of the MAMMILLARY BODIES and forming the inferior and lateral walls of the THIRD VENTRICLE. Lamina Terminalis,Preoptico-Hypothalamic Area,Area, Preoptico-Hypothalamic,Areas, Preoptico-Hypothalamic,Preoptico Hypothalamic Area,Preoptico-Hypothalamic Areas
D007608 Kainic Acid (2S-(2 alpha,3 beta,4 beta))-2-Carboxy-4-(1-methylethenyl)-3-pyrrolidineacetic acid. Ascaricide obtained from the red alga Digenea simplex. It is a potent excitatory amino acid agonist at some types of excitatory amino acid receptors and has been used to discriminate among receptor types. Like many excitatory amino acid agonists it can cause neurotoxicity and has been used experimentally for that purpose. Digenic Acid,Kainate,Acid, Digenic,Acid, Kainic
D008297 Male Males
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D001923 Brain Chemistry Changes in the amounts of various chemicals (neurotransmitters, receptors, enzymes, and other metabolites) specific to the area of the central nervous system contained within the head. These are monitored over time, during sensory stimulation, or under different disease states. Chemistry, Brain,Brain Chemistries,Chemistries, Brain
D001933 Brain Stem The part of the brain that connects the CEREBRAL HEMISPHERES with the SPINAL CORD. It consists of the MESENCEPHALON; PONS; and MEDULLA OBLONGATA. Brainstem,Truncus Cerebri,Brain Stems,Brainstems,Cerebri, Truncus,Cerebrus, Truncus,Truncus Cerebrus
D002552 Cerebral Ventricles Four CSF-filled (see CEREBROSPINAL FLUID) cavities within the cerebral hemispheres (LATERAL VENTRICLES), in the midline (THIRD VENTRICLE) and within the PONS and MEDULLA OBLONGATA (FOURTH VENTRICLE). Foramen of Monro,Cerebral Ventricular System,Cerebral Ventricle,Cerebral Ventricular Systems,Monro Foramen,System, Cerebral Ventricular,Systems, Cerebral Ventricular,Ventricle, Cerebral,Ventricles, Cerebral,Ventricular System, Cerebral,Ventricular Systems, Cerebral
D003342 Corpus Striatum Striped GRAY MATTER and WHITE MATTER consisting of the NEOSTRIATUM and paleostriatum (GLOBUS PALLIDUS). It is located in front of and lateral to the THALAMUS in each cerebral hemisphere. The gray substance is made up of the CAUDATE NUCLEUS and the lentiform nucleus (the latter consisting of the GLOBUS PALLIDUS and PUTAMEN). The WHITE MATTER is the INTERNAL CAPSULE. Lenticular Nucleus,Lentiform Nucleus,Lentiform Nuclei,Nucleus Lentiformis,Lentiformis, Nucleus,Nuclei, Lentiform,Nucleus, Lenticular,Nucleus, Lentiform,Striatum, Corpus
D006023 Glycoproteins Conjugated protein-carbohydrate compounds including MUCINS; mucoid, and AMYLOID glycoproteins. C-Glycosylated Proteins,Glycosylated Protein,Glycosylated Proteins,N-Glycosylated Proteins,O-Glycosylated Proteins,Glycoprotein,Neoglycoproteins,Protein, Glycosylated,Proteins, C-Glycosylated,Proteins, Glycosylated,Proteins, N-Glycosylated,Proteins, O-Glycosylated
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums

Related Publications

M Danik, and J G Chabot, and D Hassan-Gonzalez, and M Suh, and R Quirion
January 1989, Experimental brain research,
M Danik, and J G Chabot, and D Hassan-Gonzalez, and M Suh, and R Quirion
December 1990, Endocrinology,
M Danik, and J G Chabot, and D Hassan-Gonzalez, and M Suh, and R Quirion
March 1993, Journal of neuroscience research,
M Danik, and J G Chabot, and D Hassan-Gonzalez, and M Suh, and R Quirion
July 1991, Biology of reproduction,
M Danik, and J G Chabot, and D Hassan-Gonzalez, and M Suh, and R Quirion
December 1988, Proceedings of the National Academy of Sciences of the United States of America,
M Danik, and J G Chabot, and D Hassan-Gonzalez, and M Suh, and R Quirion
December 1993, Brain research. Molecular brain research,
M Danik, and J G Chabot, and D Hassan-Gonzalez, and M Suh, and R Quirion
December 1996, Brain research. Molecular brain research,
M Danik, and J G Chabot, and D Hassan-Gonzalez, and M Suh, and R Quirion
January 1993, Advances in experimental medicine and biology,
M Danik, and J G Chabot, and D Hassan-Gonzalez, and M Suh, and R Quirion
September 1989, The Journal of comparative neurology,
M Danik, and J G Chabot, and D Hassan-Gonzalez, and M Suh, and R Quirion
April 1987, The Journal of comparative neurology,
Copied contents to your clipboard!