Nitric oxide synthesis by rat pleural mesothelial cells: induction by cytokines and lipopolysaccharide. 1993

M W Owens, and M B Grisham
Department of Medicine, Overton Brooks Veterans Affairs Medical Center, Shreveport, Louisiana 71101-4295.

The close proximity of pleural mesothelial cells (PMC) and mononuclear cells during pleural inflammation suggests that leukocyte-derived products (e.g., cytokines) may play an important role in modulating PMC function. The purpose of this study was to determine whether certain cytokines and bacterial products induce PMC to produce nitric oxide (NO). Confluent monolayers of rat PMC were exposed to tumor necrosis factor (TNF), interleukin-1 beta (IL-1), gamma-interferon (IFN), or lipopolysaccharide (LPS) individually and in various double and triple combinations for 6-72 h. Concentrations of nitrite and nitrate were quantified and used as indirect indices of NO production. Nitrite/nitrate accumulation was maximal at 72 h, with most of the increase occurring from 48 to 72 h. Maximal nitrite/nitrate production was observed with triple combinations with the combination of LPS, IL-1, and TNF giving the highest concentration (137.4 +/- 2.8 microM). Nitrite/nitrate production was significantly inhibited by NG-nitro-L-arginine methyl ester, suggesting that nitrite and nitrate were derived from the L-arginine-dependent formation of NO. These data indicate that PMC can be induced to produce large amounts of NO in response to specific combinations of proinflammatory cytokines and LPS.

UI MeSH Term Description Entries
D008070 Lipopolysaccharides Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed) Lipopolysaccharide,Lipoglycans
D009566 Nitrates Inorganic or organic salts and esters of nitric acid. These compounds contain the NO3- radical. Nitrate
D009569 Nitric Oxide A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP. Endogenous Nitrate Vasodilator,Mononitrogen Monoxide,Nitric Oxide, Endothelium-Derived,Nitrogen Monoxide,Endothelium-Derived Nitric Oxide,Monoxide, Mononitrogen,Monoxide, Nitrogen,Nitrate Vasodilator, Endogenous,Nitric Oxide, Endothelium Derived,Oxide, Nitric,Vasodilator, Endogenous Nitrate
D009573 Nitrites Salts of nitrous acid or compounds containing the group NO2-. The inorganic nitrites of the type MNO2 (where M Nitrite
D010994 Pleura The thin serous membrane enveloping the lungs (LUNG) and lining the THORACIC CAVITY. Pleura consist of two layers, the inner visceral pleura lying next to the pulmonary parenchyma and the outer parietal pleura. Between the two layers is the PLEURAL CAVITY which contains a thin film of liquid. Parietal Pleura,Visceral Pleura,Pleura, Parietal,Pleura, Visceral
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D004848 Epithelium The layers of EPITHELIAL CELLS which cover the inner and outer surfaces of the cutaneous, mucus, and serous tissues and glands of the body. Mesothelium,Epithelial Tissue,Mesothelial Tissue,Epithelial Tissues,Mesothelial Tissues,Tissue, Epithelial,Tissue, Mesothelial,Tissues, Epithelial,Tissues, Mesothelial
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D016207 Cytokines Non-antibody proteins secreted by inflammatory leukocytes and some non-leukocytic cells, that act as intercellular mediators. They differ from classical hormones in that they are produced by a number of tissue or cell types rather than by specialized glands. They generally act locally in a paracrine or autocrine rather than endocrine manner. Cytokine

Related Publications

M W Owens, and M B Grisham
January 2000, Peritoneal dialysis international : journal of the International Society for Peritoneal Dialysis,
M W Owens, and M B Grisham
November 1994, Cytokine,
M W Owens, and M B Grisham
August 1995, Biochemical and biophysical research communications,
M W Owens, and M B Grisham
October 1995, Research communications in molecular pathology and pharmacology,
M W Owens, and M B Grisham
January 2004, The International journal of artificial organs,
M W Owens, and M B Grisham
November 1990, FEBS letters,
M W Owens, and M B Grisham
August 2011, Parasitology research,
M W Owens, and M B Grisham
March 1996, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica,
Copied contents to your clipboard!