Morphological correlations between spontaneously discharging primary vestibular afferents and vestibular nucleus neurons in the cat. 1993

F Sato, and H Sasaki
Department of Anatomy, School of Medicine, Tokyo Medical and Dental University, Japan.

Synaptic connections between physiologically classified primary vestibular afferents (PVAs) and their target vestibular nucleus (VN) neurons were examined by a combination of intra-axonal staining and electron microscopic techniques. PVAs originating from the horizontal semicircular canal were electrophysiologically classified as either regular- or irregular-type based on the regularity of their spontaneous discharge patterns, and were intra-axonally labeled with horseradish peroxidase (HRP). HRP-labeled PVAs of both types had many swellings along their course that contacted VN neurons. These swellings contained spherical synaptic vesicles and showed asymmetric postsynaptic specialization. Target VN neurons of both types of PVAs were distributed primarily in the superior, medial, and inferior VN. Irregular-type PVAs made more axosomatic contacts than did regular-type PVAs. The soma size of target VN neurons and the number of terminal boutons per target VN neuron were larger for irregular-type PVAs than for regular-type PVAs. Large VN neurons (presumably kinetic neurons) were innervated exclusively by irregular-type PVAs. Small VN neurons were innervated by PVAs of the regular-type and the irregular-type. These results demonstrate that there is a correlation between the physiological properties and morphological characteristics of PVAs and their target VN neurons.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009411 Nerve Endings Branch-like terminations of NERVE FIBERS, sensory or motor NEURONS. Endings of sensory neurons are the beginnings of afferent pathway to the CENTRAL NERVOUS SYSTEM. Endings of motor neurons are the terminals of axons at the muscle cells. Nerve endings which release neurotransmitters are called PRESYNAPTIC TERMINALS. Ending, Nerve,Endings, Nerve,Nerve Ending
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009475 Neurons, Afferent Neurons which conduct NERVE IMPULSES to the CENTRAL NERVOUS SYSTEM. Afferent Neurons,Afferent Neuron,Neuron, Afferent
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D006651 Histocytochemistry Study of intracellular distribution of chemicals, reaction sites, enzymes, etc., by means of staining reactions, radioactive isotope uptake, selective metal distribution in electron microscopy, or other methods. Cytochemistry
D006735 Horseradish Peroxidase An enzyme isolated from horseradish which is able to act as an antigen. It is frequently used as a histochemical tracer for light and electron microscopy. Its antigenicity has permitted its use as a combined antigen and marker in experimental immunology. Alpha-Peroxidase,Ferrihorseradish Peroxidase,Horseradish Peroxidase II,Horseradish Peroxidase III,Alpha Peroxidase,II, Horseradish Peroxidase,III, Horseradish Peroxidase,Peroxidase II, Horseradish,Peroxidase III, Horseradish,Peroxidase, Ferrihorseradish,Peroxidase, Horseradish
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D012665 Semicircular Canals Three long canals (anterior, posterior, and lateral) of the bony labyrinth. They are set at right angles to each other and are situated posterosuperior to the vestibule of the bony labyrinth (VESTIBULAR LABYRINTH). The semicircular canals have five openings into the vestibule with one shared by the anterior and the posterior canals. Within the canals are the SEMICIRCULAR DUCTS. Semi-Circular Canals,Canal, Semi-Circular,Canal, Semicircular,Semi Circular Canals,Semi-Circular Canal,Semicircular Canal

Related Publications

F Sato, and H Sasaki
November 2000, The Journal of comparative neurology,
F Sato, and H Sasaki
August 1988, Neuroscience letters,
F Sato, and H Sasaki
January 1981, Neirofiziologiia = Neurophysiology,
F Sato, and H Sasaki
October 2016, Journal of neurophysiology,
Copied contents to your clipboard!