In vivo regulation of low-density lipoprotein receptors by estrogen differs at the post-transcriptional level in rat and mouse. 1993

R A Srivastava, and D Baumann, and G Schonfeld
Department of Internal Medicine, Washington University School of Medicine, St Louis, MO 63110 1093.

Rats and mice are frequently used in studies of the regulation of lipoprotein metabolism. Although the species are closely related, they differ dramatically in the responses of their lipoproteins to estrogen administration. In rats, estrogens produce profound decreases in the levels of all plasma lipoproteins and this is attributed largely to estrogen-induced increases of hepatic low-density lipoprotein receptor (LDL-receptor) activity. Estrogens affect mouse plasma lipoproteins to a much lesser extent. Therefore, one of our aims was to compare the regulation of LDL-receptor gene expression in rats and mice at several potential loci of regulation. To assess the specificity of the estrogen effect, we also compared the responses of apolipoprotein AI (apoAI), apolipoprotein B (apoB), and beta-actin to the response of the LDL-receptor. In male Sprague Dawley rats given 17 beta-estradiol or 17 alpha-ethinyl estradiol at supraphysiological doses of 5 micrograms/g body mass/day, plasma total cholesterol and triacylglycerols fell to approximately 5% and approximately 50%, and, plasma apoAI and apoB fell to approximately 12% and approximately 16% of controls, respectively. By contrast, in male C3H/HeJ mice the above parameters dropped only to approximately 65% of controls and apoB concentrations rose to approximately 200% of controls. In rats, relative rates of LDL-receptor mRNA transcription (nuclear 'run-off' assay) and total hepatic, nuclear and polysomal LDL-receptor mRNA levels (RNase protection assay) increased by 1.5-2-fold, while synthesis of LDL-receptor protein on hepatic polysomes (in a wheat-germ translation system) increased 8-fold and LDL-receptor protein mass in hepatic plasma membranes increased 10-fold (by immunoblotting). In mouse liver, too, LDL-receptor mRNA levels increased 1.5-fold and the LDL-receptor mRNA transcription start sites in rat and mouse were found to be the same, but mouse LDL-receptor protein mass did not change, i.e. LDL-receptors of mice were similar to rat with respect to transcriptional regulation, but differed in their post-transcriptional control mechanisms. In rats, estrogen administration increased apoAI mRNA transcription rates 1.6-fold and also apoAI mRNA levels in total liver homogenates, nuclei and polysomes, (2-fold for each) consistent with transcriptional regulation. However, apoAI synthesis on total RNA increased less than apoAI mRNA, indicating that apoAI translational control mechanisms, at least in part, also regulate hepatic rates of apoAI production. ApoB mRNA transcription rates and levels showed small increases following estrogen administration. Hepatic beta-actin mRNA transcription and levels did not change.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D008809 Mice, Inbred C3H An inbred strain of mouse that is used as a general purpose strain in a wide variety of RESEARCH areas including CANCER; INFECTIOUS DISEASES; sensorineural, and cardiovascular biology research. Mice, C3H,Mouse, C3H,Mouse, Inbred C3H,C3H Mice,C3H Mice, Inbred,C3H Mouse,C3H Mouse, Inbred,Inbred C3H Mice,Inbred C3H Mouse
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011973 Receptors, LDL Receptors on the plasma membrane of nonhepatic cells that specifically bind LDL. The receptors are localized in specialized regions called coated pits. Hypercholesteremia is caused by an allelic genetic defect of three types: 1, receptors do not bind to LDL; 2, there is reduced binding of LDL; and 3, there is normal binding but no internalization of LDL. In consequence, entry of cholesterol esters into the cell is impaired and the intracellular feedback by cholesterol on 3-hydroxy-3-methylglutaryl CoA reductase is lacking. LDL Receptors,Lipoprotein LDL Receptors,Receptors, Low Density Lipoprotein,LDL Receptor,LDL Receptors, Lipoprotein,Low Density Lipoprotein Receptor,Low Density Lipoprotein Receptors,Receptors, Lipoprotein, LDL,Receptor, LDL,Receptors, Lipoprotein LDL
D004277 DNA, Single-Stranded A single chain of deoxyribonucleotides that occurs in some bacteria and viruses. It usually exists as a covalently closed circle. Single-Stranded DNA,DNA, Single Stranded,Single Stranded DNA
D004967 Estrogens Compounds that interact with ESTROGEN RECEPTORS in target tissues to bring about the effects similar to those of ESTRADIOL. Estrogens stimulate the female reproductive organs, and the development of secondary female SEX CHARACTERISTICS. Estrogenic chemicals include natural, synthetic, steroidal, or non-steroidal compounds. Estrogen,Estrogen Effect,Estrogen Effects,Estrogen Receptor Agonists,Estrogenic Agents,Estrogenic Compounds,Estrogenic Effect,Estrogenic Effects,Agents, Estrogenic,Agonists, Estrogen Receptor,Compounds, Estrogenic,Effects, Estrogen,Effects, Estrogenic,Receptor Agonists, Estrogen
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001055 Apolipoproteins B Major structural proteins of triacylglycerol-rich LIPOPROTEINS. There are two forms, apolipoprotein B-100 and apolipoprotein B-48, both derived from a single gene. ApoB-100 expressed in the liver is found in low-density lipoproteins (LIPOPROTEINS, LDL; LIPOPROTEINS, VLDL). ApoB-48 expressed in the intestine is found in CHYLOMICRONS. They are important in the biosynthesis, transport, and metabolism of triacylglycerol-rich lipoproteins. Plasma Apo-B levels are high in atherosclerotic patients but non-detectable in ABETALIPOPROTEINEMIA. Apo-B,Apo B,ApoB,Apoprotein (B),Apoproteins B

Related Publications

R A Srivastava, and D Baumann, and G Schonfeld
January 1994, The American journal of physiology,
R A Srivastava, and D Baumann, and G Schonfeld
November 2004, The Journal of biological chemistry,
R A Srivastava, and D Baumann, and G Schonfeld
December 1990, Journal of lipid research,
R A Srivastava, and D Baumann, and G Schonfeld
July 1983, The Journal of biological chemistry,
R A Srivastava, and D Baumann, and G Schonfeld
October 1994, Journal of lipid research,
R A Srivastava, and D Baumann, and G Schonfeld
January 1991, Endocrinology,
R A Srivastava, and D Baumann, and G Schonfeld
June 1994, European journal of biochemistry,
R A Srivastava, and D Baumann, and G Schonfeld
August 1979, Biochimica et biophysica acta,
R A Srivastava, and D Baumann, and G Schonfeld
February 2006, Molecular and cellular endocrinology,
Copied contents to your clipboard!