Protective effects of antioxidants against endrin-induced hepatic lipid peroxidation, DNA damage, and excretion of urinary lipid metabolites. 1993

D Bagchi, and E A Hassoun, and M Bagchi, and S J Stohs
Department of Pharmaceutical Sciences and Pharmacology, Creighton University Health Sciences Center, Omaha, NE 68178.

Oxidative stress is believed to play a pivotal role in endrin-induced hepatic and neurologic toxicity. Therefore, the effects of the antioxidants vitamin E succinate and ellagic acid have been examined on hepatic lipid peroxidation, DNA single-strand breaks (SSB), and the urinary excretion of lipid metabolites following an acute oral dose of 4.5 mg endrin/kg. Groups of rats were pretreated with 100 mg/kg vitamin E succinate for 3 d followed by 40 mg/kg on day 4, or 6.0 mg ellagic acid/kg for 3 d p.o. followed by 3.0 mg/kg on day 4 or the vehicle. Endrin was administered p.o. on day 4 2 hr after treatment with the antioxidant. All animals were killed 24 h after endrin administration. Vitamin E succinate pretreatment decreased the endrin-induced increase in hepatic mitochondrial and microsomal lipid peroxidation by approximately 60% and 40%, respectively. Ellagic acid pretreatment reduced the endrin-induced increased in mitochondrial and microsomal lipid peroxidation by approximately 76 and 79%, respectively. Both vitamin E succinate and ellagic acid alone produced small but nonsignificant decreases in hepatic mitochondrial and microsomal lipid peroxidation. A 3.3-fold increase in the incidence of hepatic nuclear DNA single-strand breaks was observed 24 h after endrin administration. Pretreatment of rats with vitamin E succinate, vitamin E, and ellagic acid decreased endrin-induced DNA-SSB by approximately 47%, 22%, and 21%, respectively. Pretreatment of rats with vitamin E succinate decreased the endrin-induced increase in the urinary excretion of malondialdehyde, acetaldehyde, formaldehyde, and acetone by approximately 68, 65, 70, and 55%, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D008055 Lipids A generic term for fats and lipoids, the alcohol-ether-soluble constituents of protoplasm, which are insoluble in water. They comprise the fats, fatty oils, essential oils, waxes, phospholipids, glycolipids, sulfolipids, aminolipids, chromolipids (lipochromes), and fatty acids. (Grant & Hackh's Chemical Dictionary, 5th ed) Lipid
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008315 Malondialdehyde The dialdehyde of malonic acid. Malonaldehyde,Propanedial,Malonylaldehyde,Malonyldialdehyde,Sodium Malondialdehyde,Malondialdehyde, Sodium
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D008930 Mitochondria, Liver Mitochondria in hepatocytes. As in all mitochondria, there are an outer membrane and an inner membrane, together creating two separate mitochondrial compartments: the internal matrix space and a much narrower intermembrane space. In the liver mitochondrion, an estimated 67% of the total mitochondrial proteins is located in the matrix. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p343-4) Liver Mitochondria,Liver Mitochondrion,Mitochondrion, Liver
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D004610 Ellagic Acid A fused four ring compound occurring free or combined in galls. Isolated from the kino of Eucalyptus maculata Hook and E. Hemipholia F. Muell. Activates Factor XII of the blood clotting system which also causes kinin release; used in research and as a dye. Benzoaric Acid,Acid, Benzoaric,Acid, Ellagic
D004732 Endrin An organochlorine compound that was formerly used as an insecticide. Its manufacture and use has been discontinued in the United States. (From Merck Index, 11th ed) Hexadrin
D005260 Female Females
D005557 Formaldehyde A highly reactive aldehyde gas formed by oxidation or incomplete combustion of hydrocarbons. In solution, it has a wide range of uses: in the manufacture of resins and textiles, as a disinfectant, and as a laboratory fixative or preservative. Formaldehyde solution (formalin) is considered a hazardous compound, and its vapor toxic. (From Reynolds, Martindale The Extra Pharmacopoeia, 30th ed, p717) Formalin,Formol,Methanal,Oxomethane

Related Publications

D Bagchi, and E A Hassoun, and M Bagchi, and S J Stohs
January 1990, Archives of environmental contamination and toxicology,
D Bagchi, and E A Hassoun, and M Bagchi, and S J Stohs
December 1991, Cancer letters,
D Bagchi, and E A Hassoun, and M Bagchi, and S J Stohs
June 1987, Surgery,
D Bagchi, and E A Hassoun, and M Bagchi, and S J Stohs
December 1995, Pharmacology & toxicology,
D Bagchi, and E A Hassoun, and M Bagchi, and S J Stohs
January 1997, Toxicology,
D Bagchi, and E A Hassoun, and M Bagchi, and S J Stohs
September 2004, Nihon rinsho. Japanese journal of clinical medicine,
D Bagchi, and E A Hassoun, and M Bagchi, and S J Stohs
December 2000, Journal of toxicology and environmental health. Part A,
D Bagchi, and E A Hassoun, and M Bagchi, and S J Stohs
December 2017, Pharmaceutical biology,
D Bagchi, and E A Hassoun, and M Bagchi, and S J Stohs
October 1998, Free radical research,
Copied contents to your clipboard!