Effect of vascular pressure on interstitial pressures in the isolated dog lung. 1993

M R Glucksberg, and J Bhattacharya
Biomedical Engineering Department, Northwestern University, Evanston, Illinois 60208.

We report the first direct measurements of the effect of pulmonary vascular pressures on perialveolar interstitial pressures. In seven experiments we varied the intravascular pressure (Pvas) in isolated dog lungs held at constant airway pressure (PA). By the micropuncture servo-null technique, we recorded perialveolar interstitial pressures with respect to pleural pressure (0 cmH2O) at the alveolar junctions (Pjct) and in microvascular adventitia (Padv). At PA = 7 cmH2O, increase from 5 to 15 cmH2O did not affect Pjct, although it decreased Padv by 1.2 +/- 0.4 cmH2O. The Pjct-Padv gradient increased by 77%. Increasing Pvas to 25 cmH2O had no further effect on either interstitial pressure. In four experiments we also determined interstitial pressure in the hilum (Phil). When Pvas was increased from 5 to 15 cmH2O, Phil increased by 4.5 +/- 0.9 cmH2O. Further elevation of Pvas to 25 cmH2O increased Phil further by 2.4 +/- 0.4 cmH2O. At PA = 15 cmH2O, all interstitial pressures decreased, but their responses to Pvas were similar. We conclude that increase of Pvas 1) increases Phil but not perialveolar interstitial pressures and 2) increases the perialveolar interstitial pressure gradient, which may promote local liquid clearance.

UI MeSH Term Description Entries
D008168 Lung Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood. Lungs
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D011650 Pulmonary Alveoli Small polyhedral outpouchings along the walls of the alveolar sacs, alveolar ducts and terminal bronchioles through the walls of which gas exchange between alveolar air and pulmonary capillary blood takes place. Alveoli, Pulmonary,Alveolus, Pulmonary,Pulmonary Alveolus
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D002196 Capillaries The minute vessels that connect arterioles and venules. Capillary Beds,Sinusoidal Beds,Sinusoids,Bed, Sinusoidal,Beds, Sinusoidal,Capillary,Capillary Bed,Sinusoid,Sinusoidal Bed
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D005110 Extracellular Space Interstitial space between cells, occupied by INTERSTITIAL FLUID as well as amorphous and fibrous substances. For organisms with a CELL WALL, the extracellular space includes everything outside of the CELL MEMBRANE including the PERIPLASM and the cell wall. Intercellular Space,Extracellular Spaces,Intercellular Spaces,Space, Extracellular,Space, Intercellular,Spaces, Extracellular,Spaces, Intercellular
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015633 Extravascular Lung Water Water content outside of the lung vasculature. About 80% of a normal lung is made up of water, including intracellular, interstitial, and blood water. Failure to maintain the normal homeostatic fluid exchange between the vascular space and the interstitium of the lungs can result in PULMONARY EDEMA and flooding of the alveolar space. Lung Water, Extravascular,Extra Vascular Lung Water,Lung Water, Extra Vascular,Water, Extravascular Lung
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

M R Glucksberg, and J Bhattacharya
January 1982, Journal of applied physiology: respiratory, environmental and exercise physiology,
M R Glucksberg, and J Bhattacharya
March 1983, Journal of applied physiology: respiratory, environmental and exercise physiology,
M R Glucksberg, and J Bhattacharya
June 1984, Circulation research,
M R Glucksberg, and J Bhattacharya
October 1980, Science (New York, N.Y.),
M R Glucksberg, and J Bhattacharya
April 1987, The American journal of physiology,
M R Glucksberg, and J Bhattacharya
July 1963, Journal of applied physiology,
M R Glucksberg, and J Bhattacharya
January 1967, Bollettino della Societa italiana di biologia sperimentale,
M R Glucksberg, and J Bhattacharya
January 1967, Bollettino della Societa italiana di biologia sperimentale,
M R Glucksberg, and J Bhattacharya
July 1984, Journal of applied physiology: respiratory, environmental and exercise physiology,
M R Glucksberg, and J Bhattacharya
August 1966, Bollettino della Societa italiana di biologia sperimentale,
Copied contents to your clipboard!