Specific placement of tryptophan in the catalytic sites of Escherichia coli F1-ATPase provides a direct probe of nucleotide binding: maximal ATP hydrolysis occurs with three sites occupied. 1993

J Weber, and S Wilke-Mounts, and R S Lee, and E Grell, and A E Senior
Department of Biochemistry, University of Rochester Medical Center, New York 14642.

Residue beta Y331 of Escherichia coli F1-ATPase is known from previous affinity labeling, mutagenesis, and lin-benzo-ADP binding experiments to interact directly with the adenine moiety of substrates bound in catalytic sites. Here we mutagenized beta Y331 to tryptophan. Mutant cells grew well on succinate or limiting glucose; purified mutant F1 had kappa cat/Km and lin-benzo-ADP binding characteristics similar to wild type. Fluorescence from beta W331 residues exhibited a maximum at 349 nm, indicating a polar environment in unoccupied sites. ATP, ADP, or AMPPNP caused virtually complete quenching of beta W331 fluorescence, so that the fluorescence of mutant F1 with occupied catalytic sites resembled that of wild-type enzyme. Therefore the beta W331 fluorescence provided a direct probe of nucleotide binding to catalytic sites under true equilibrium conditions. We measured ATP binding and hydrolysis in parallel experiments and found that occupancy of one or two catalytic sites per F1 molecule did not yield significant rates of hydrolysis while occupancy of all three sites yielded Vmax rates. Km(ATP) was similar to Kd3, the Kd for ATP binding to the third catalytic site. We also measured AMPPNP and ADP binding parameters. For ADP, the "on" rate at the first catalytic site was much faster (> or = 5 x 10(5) M-1 s-1) than seen previously by centrifuge column procedures, although the Kd was not much changed. For AMPPNP, the "on" rate at the first site was 2 orders of magnitude less than for ADP or ATP, and the Kd was similar to that for ADP.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009838 Oligodeoxyribonucleotides A group of deoxyribonucleotides (up to 12) in which the phosphate residues of each deoxyribonucleotide act as bridges in forming diester linkages between the deoxyribose moieties. Oligodeoxynucleotide,Oligodeoxyribonucleotide,Oligodeoxynucleotides
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D006180 Proton-Translocating ATPases Multisubunit enzymes that reversibly synthesize ADENOSINE TRIPHOSPHATE. They are coupled to the transport of protons across a membrane. ATP Dependent Proton Translocase,ATPase, F0,ATPase, F1,Adenosinetriphosphatase F1,F(1)F(0)-ATPase,F1 ATPase,H(+)-Transporting ATP Synthase,H(+)-Transporting ATPase,H(+)ATPase Complex,Proton-Translocating ATPase,Proton-Translocating ATPase Complex,Proton-Translocating ATPase Complexes,ATPase, F(1)F(0),ATPase, F0F1,ATPase, H(+),Adenosine Triphosphatase Complex,F(0)F(1)-ATP Synthase,F-0-ATPase,F-1-ATPase,F0F1 ATPase,F1-ATPase,F1F0 ATPase Complex,H(+)-ATPase,H(+)-Transporting ATP Synthase, Acyl-Phosphate-Linked,H+ ATPase,H+ Transporting ATP Synthase,H+-Translocating ATPase,Proton-Translocating ATPase, F0 Sector,Proton-Translocating ATPase, F1 Sector,ATPase Complex, Proton-Translocating,ATPase Complexes, Proton-Translocating,ATPase, H+,ATPase, H+-Translocating,ATPase, Proton-Translocating,Complex, Adenosine Triphosphatase,Complexes, Proton-Translocating ATPase,F 0 ATPase,F 1 ATPase,F0 ATPase,H+ Translocating ATPase,Proton Translocating ATPase,Proton Translocating ATPase Complex,Proton Translocating ATPase Complexes,Proton Translocating ATPase, F0 Sector,Proton Translocating ATPase, F1 Sector,Triphosphatase Complex, Adenosine
D006868 Hydrolysis The process of cleaving a chemical compound by the addition of a molecule of water.
D000244 Adenosine Diphosphate Adenosine 5'-(trihydrogen diphosphate). An adenine nucleotide containing two phosphate groups esterified to the sugar moiety at the 5'-position. ADP,Adenosine Pyrophosphate,Magnesium ADP,MgADP,Adenosine 5'-Pyrophosphate,5'-Pyrophosphate, Adenosine,ADP, Magnesium,Adenosine 5' Pyrophosphate,Diphosphate, Adenosine,Pyrophosphate, Adenosine
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000266 Adenylyl Imidodiphosphate 5'-Adenylic acid, monoanhydride with imidodiphosphoric acid. An analog of ATP, in which the oxygen atom bridging the beta to the gamma phosphate is replaced by a nitrogen atom. It is a potent competitive inhibitor of soluble and membrane-bound mitochondrial ATPase and also inhibits ATP-dependent reactions of oxidative phosphorylation. Adenyl Imidodiphosphate,gamma-Imino-ATP,AMP-PNP,AMPPNP,ATP(beta,gamma-NH),Adenosine 5'-(beta,gamma-Imino)triphosphate,Adenylimidodiphosphate,Adenylylimidodiphosphate,Mg AMP-PNP,Mg-5'-Adenylylimidodiphosphate,beta,gamma-imido-ATP,gamma-Imido-ATP,AMP-PNP, Mg,Imidodiphosphate, Adenyl,Imidodiphosphate, Adenylyl,Mg 5' Adenylylimidodiphosphate,Mg AMP PNP,beta,gamma imido ATP,gamma Imido ATP,gamma Imino ATP
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein

Related Publications

J Weber, and S Wilke-Mounts, and R S Lee, and E Grell, and A E Senior
October 1992, Journal of bioenergetics and biomembranes,
J Weber, and S Wilke-Mounts, and R S Lee, and E Grell, and A E Senior
February 1996, The Journal of biological chemistry,
J Weber, and S Wilke-Mounts, and R S Lee, and E Grell, and A E Senior
July 1999, The Journal of biological chemistry,
J Weber, and S Wilke-Mounts, and R S Lee, and E Grell, and A E Senior
July 1997, FEBS letters,
J Weber, and S Wilke-Mounts, and R S Lee, and E Grell, and A E Senior
November 1994, The Journal of biological chemistry,
J Weber, and S Wilke-Mounts, and R S Lee, and E Grell, and A E Senior
March 2007, Proceedings of the National Academy of Sciences of the United States of America,
J Weber, and S Wilke-Mounts, and R S Lee, and E Grell, and A E Senior
November 2004, Biophysical journal,
J Weber, and S Wilke-Mounts, and R S Lee, and E Grell, and A E Senior
December 1998, The Journal of biological chemistry,
J Weber, and S Wilke-Mounts, and R S Lee, and E Grell, and A E Senior
August 1996, The Journal of biological chemistry,
Copied contents to your clipboard!