Bile acid transport into hepatocyte smooth endoplasmic reticulum vesicles is mediated by microsomal epoxide hydrolase, a membrane protein exhibiting two distinct topological orientations. 1993

C Alves, and P von Dippe, and M Amoui, and D Levy
Department of Biochemistry, School of Medicine, University of Southern California, Los Angeles 90033.

Bile acids, such as taurocholate, have been shown to be transported into hepatocyte smooth endoplasmic reticulum (SER) vesicles. This process is Na(+)-independent, electrogenic, inhibitable by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid and taurochenodeoxycholate, with a Km of 352 microM and a Vmax of 29.6 nmol/mg protein/min. The observed transport is mediated by the bifunctional protein, microsomal epoxide hydrolase (mEH) which can also mediate bile acid transport into hepatocytes across the sinusoidal plasma membrane (von Dippe, P., Amoui, M., Alves, C., and Levy, D. (1993) Am. J. Physiol. 264, G528-G534). mEH was isolated from SER membranes by immunoprecipitation with monoclonal antibody (mAb) 25D-1 which recognizes this protein on the surface of intact hepatocytes. The SER-derived protein exhibited an apparent molecular weight, isoelectric point, N-terminal amino acid sequence, and mEH-specific activity that were indistinguishable from the plasma membrane form of the enzyme. Proteoliposome reconstitution of the SER taurocholate transport system indicated that mEH was absolutely required for the expression of transport capacity. The interaction of mAb 25D-1 with mEH on intact right-side-out SER vesicles demonstrated that the epitope found on the surface of hepatocytes was also found on the cytoplasmic surface of these vesicles (80%) and in the lumen (20%) suggesting the presence of two forms of this protein in the SER, the latter from being sorted to the cell surface. The existence of two orientations of this protein in the SER was confirmed by the sensitivity to tryptic digestion, where 75% of the mAb epitope was accessible to the enzyme. The loss of the 25D-1 epitope correlated with loss of taurocholate transport capacity. The role of mEH in the transport process and the orientation of the transporting isoform was further established by demonstrating that mAb 25A-3, which also reacts with mEH on the hepatocyte surface, was able to directly inhibit taurocholate transport in the SER vesicle system. These and previous results thus establish that isoforms of mEH can mediate taurocholate transport at the sinusoidal plasma membrane and in SER vesicles and that this bifunctional protein can exist in two orientations in the SER membrane. The association of bile acids with the SER suggests a possible role of intracellular vesicles in the transhepatocellular movement of bile acids from the sinusoidal to the canalicular compartment.

UI MeSH Term Description Entries
D007425 Intracellular Membranes Thin structures that encapsulate subcellular structures or ORGANELLES in EUKARYOTIC CELLS. They include a variety of membranes associated with the CELL NUCLEUS; the MITOCHONDRIA; the GOLGI APPARATUS; the ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES. Membranes, Intracellular,Intracellular Membrane,Membrane, Intracellular
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004721 Endoplasmic Reticulum A system of cisternae in the CYTOPLASM of many cells. In places the endoplasmic reticulum is continuous with the plasma membrane (CELL MEMBRANE) or outer membrane of the nuclear envelope. If the outer surfaces of the endoplasmic reticulum membranes are coated with ribosomes, the endoplasmic reticulum is said to be rough-surfaced (ENDOPLASMIC RETICULUM, ROUGH); otherwise it is said to be smooth-surfaced (ENDOPLASMIC RETICULUM, SMOOTH). (King & Stansfield, A Dictionary of Genetics, 4th ed) Ergastoplasm,Reticulum, Endoplasmic
D004851 Epoxide Hydrolases Enzymes that catalyze reversibly the formation of an epoxide or arene oxide from a glycol or aromatic diol, respectively. Epoxide Hydrase,Epoxide Hydrases,Epoxide Hydratase,Epoxide Hydratases,Epoxide Hydrolase,9,10-Epoxypalmitic Acid Hydrase,Microsomal Epoxide Hydrolase,Styrene Epoxide Hydrolase,9,10 Epoxypalmitic Acid Hydrase,Acid Hydrase, 9,10-Epoxypalmitic,Epoxide Hydrolase, Microsomal,Epoxide Hydrolase, Styrene,Hydrase, 9,10-Epoxypalmitic Acid,Hydrase, Epoxide,Hydrases, Epoxide,Hydratase, Epoxide,Hydratases, Epoxide,Hydrolase, Epoxide,Hydrolase, Microsomal Epoxide,Hydrolase, Styrene Epoxide,Hydrolases, Epoxide
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

C Alves, and P von Dippe, and M Amoui, and D Levy
September 1999, The Journal of biological chemistry,
C Alves, and P von Dippe, and M Amoui, and D Levy
November 1985, The EMBO journal,
C Alves, and P von Dippe, and M Amoui, and D Levy
January 1982, Acta chemica Scandinavica. Series B: Organic chemistry and biochemistry,
C Alves, and P von Dippe, and M Amoui, and D Levy
October 2003, Biochemical and biophysical research communications,
C Alves, and P von Dippe, and M Amoui, and D Levy
December 1996, The EMBO journal,
C Alves, and P von Dippe, and M Amoui, and D Levy
September 2008, The FEBS journal,
C Alves, and P von Dippe, and M Amoui, and D Levy
March 2004, Biochemistry and molecular biology education : a bimonthly publication of the International Union of Biochemistry and Molecular Biology,
C Alves, and P von Dippe, and M Amoui, and D Levy
January 1995, Cold Spring Harbor symposia on quantitative biology,
C Alves, and P von Dippe, and M Amoui, and D Levy
March 2015, Journal of molecular biology,
Copied contents to your clipboard!