A 76-amino acid disulfide loop in the Yersinia pseudotuberculosis invasin protein is required for integrin receptor recognition. 1993

J M Leong, and P E Morrissey, and R R Isberg
Department of Medicine, Tufts-New England Medical Center Hospital, Boston, Massachusetts 02111.

The Yersinia pseudotuberculosis invasin protein is a 986-amino acid protein that promotes bacterial penetration into mammalian cells by avidly binding multiple beta 1-chain integrins. A 192-amino acid carboxyl-terminal domain of invasin was previously shown to be sufficient for binding. Evidence is presented here that a 76-amino acid disulfide loop in the integrin binding domain of invasin is required for invasin-mediated cell binding and entry. Bacterial mutants that were altered at either of 2 cysteine residues in the binding domain of invasin were completely defective for entry. Purified invasin protein derivatives altered at either of these cysteines, in contrast to the wild-type invasin, did not promote either cell binding or penetration. Analysis of proteolytic products of invasin in the presence or absence of reducing agent provided evidence of an intra-chain disulfide bond near the carboxyl terminus of the protein. Alkylation of invasin derivatives with [3H]iodoacetate indicated that these 2 cysteines were normally disulfide-bonded. A treatment that resulted in the maximal reduction of the disulfide bond also resulted in maximal loss of cell attachment activity. These results indicate that the 76-amino acid disulfide loop at the carboxyl terminus of invasin is required for recognition by integrins.

UI MeSH Term Description Entries
D007461 Iodoacetates Iodinated derivatives of acetic acid. Iodoacetates are commonly used as alkylating sulfhydryl reagents and enzyme inhibitors in biochemical research. Iodoacetic Acids,Acids, Iodoacetic
D007700 Kinetics The rate dynamics in chemical or physical systems.
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D003062 Codon A set of three nucleotides in a protein coding sequence that specifies individual amino acids or a termination signal (CODON, TERMINATOR). Most codons are universal, but some organisms do not produce the transfer RNAs (RNA, TRANSFER) complementary to all codons. These codons are referred to as unassigned codons (CODONS, NONSENSE). Codon, Sense,Sense Codon,Codons,Codons, Sense,Sense Codons
D004220 Disulfides Chemical groups containing the covalent disulfide bonds -S-S-. The sulfur atoms can be bound to inorganic or organic moieties. Disulfide
D004229 Dithiothreitol A reagent commonly used in biochemical studies as a protective agent to prevent the oxidation of SH (thiol) groups and for reducing disulphides to dithiols. Cleland Reagent,Cleland's Reagent,Sputolysin,Clelands Reagent,Reagent, Cleland,Reagent, Cleland's
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial

Related Publications

J M Leong, and P E Morrissey, and R R Isberg
June 1990, The EMBO journal,
J M Leong, and P E Morrissey, and R R Isberg
October 1992, Infection and immunity,
J M Leong, and P E Morrissey, and R R Isberg
September 1996, The Journal of biological chemistry,
J M Leong, and P E Morrissey, and R R Isberg
December 1991, The Journal of biological chemistry,
J M Leong, and P E Morrissey, and R R Isberg
January 2005, Microbiology and immunology,
J M Leong, and P E Morrissey, and R R Isberg
September 1988, Proceedings of the National Academy of Sciences of the United States of America,
J M Leong, and P E Morrissey, and R R Isberg
February 1992, Infection and immunity,
Copied contents to your clipboard!