Purification and characterization of the Saccharomyces cerevisiae DNA polymerase delta overproduced in Escherichia coli. 1993

W C Brown, and J A Duncan, and J L Campbell
Braun Laboratories, California Institute of Technology, Pasadena 91125.

In order to further define the enzymatic properties of yeast DNA polymerase delta, the Saccharomyces cerevisiae POL3 gene, whose expression is highly toxic to bacteria in most cloning vectors, was cloned into a new T7 expression vector (W. C. Brown and J. L. Campbell, submitted for publication) which allowed efficient overexpression in bacteria. Fifteen mg of polymerase were obtained from 3 g of cells. Since the protein is produced in insoluble form, to obtain active polymerase, inclusion bodies were solubilized with urea. DNA polymerase delta (124 kDa) was purified in the presence of urea and then renatured by dialysis against buffers containing decreasing concentrations of urea. Optimal protein concentration for refolding was 5 micrograms/ml. By several criteria the enzyme obtained is comparable with that from yeast: specific activity, electrophoretic mobility, template preference, sensitivity to inhibitors, and processivity. The electrophoretic mobility suggests that, unlike DNA polymerase alpha, polymerase delta is not posttranslationally modified in yeast. Polyclonal antibody was raised against the full-length DNA polymerase delta from bacteria and shown to cross-react with the protein purified from yeast on protein blots. The renatured protein also exhibits an exonucleolytic activity. Further examination of this nuclease determined it to be a 3' to 5' exonuclease with the characteristics of a proofreading activity. The presence of this nuclease in the highly purified bacterial polymerase provides biochemical confirmation of earlier genetic evidence (Simon, M., Giot, L., and Faye, G. (1991) EMBO J. 10, 2165-2170) that suggested that DNA polymerase delta's core catalytic subunit contains an intrinsic 3' to 5' exonuclease.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D010761 Phosphorus Radioisotopes Unstable isotopes of phosphorus that decay or disintegrate emitting radiation. P atoms with atomic weights 28-34 except 31 are radioactive phosphorus isotopes. Radioisotopes, Phosphorus
D011489 Protein Denaturation Disruption of the non-covalent bonds and/or disulfide bonds responsible for maintaining the three-dimensional shape and activity of the native protein. Denaturation, Protein,Denaturations, Protein,Protein Denaturations
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D003854 Deoxyribonucleotides A purine or pyrimidine base bonded to a DEOXYRIBOSE containing a bond to a phosphate group. Deoxyribonucleotide
D004258 DNA Polymerase III A DNA-dependent DNA polymerase characterized in E. coli and other lower organisms but may be present in higher organisms. Use also for a more complex form of DNA polymerase III designated as DNA polymerase III* or pol III* which is 15 times more active biologically than DNA polymerase I in the synthesis of DNA. This polymerase has both 3'-5' and 5'-3' exonuclease activities, is inhibited by sulfhydryl reagents, and has the same template-primer dependence as pol II. DNA Polymerase delta,DNA-Dependent DNA Polymerase III,DNA Pol III,DNA Dependent DNA Polymerase III,Polymerase III, DNA,Polymerase delta, DNA
D004259 DNA-Directed DNA Polymerase DNA-dependent DNA polymerases found in bacteria, animal and plant cells. During the replication process, these enzymes catalyze the addition of deoxyribonucleotide residues to the end of a DNA strand in the presence of DNA as template-primer. They also possess exonuclease activity and therefore function in DNA repair. DNA Polymerase,DNA Polymerases,DNA-Dependent DNA Polymerases,DNA Polymerase N3,DNA Dependent DNA Polymerases,DNA Directed DNA Polymerase,DNA Polymerase, DNA-Directed,DNA Polymerases, DNA-Dependent,Polymerase N3, DNA,Polymerase, DNA,Polymerase, DNA-Directed DNA,Polymerases, DNA,Polymerases, DNA-Dependent DNA
D004271 DNA, Fungal Deoxyribonucleic acid that makes up the genetic material of fungi. Fungal DNA

Related Publications

W C Brown, and J A Duncan, and J L Campbell
January 1988, The Journal of biological chemistry,
W C Brown, and J A Duncan, and J L Campbell
January 1984, Advances in experimental medicine and biology,
W C Brown, and J A Duncan, and J L Campbell
January 2006, Methods in enzymology,
W C Brown, and J A Duncan, and J L Campbell
July 1998, The Journal of biological chemistry,
W C Brown, and J A Duncan, and J L Campbell
November 2001, The Journal of biological chemistry,
W C Brown, and J A Duncan, and J L Campbell
July 2019, Protein expression and purification,
W C Brown, and J A Duncan, and J L Campbell
April 1989, The Journal of biological chemistry,
W C Brown, and J A Duncan, and J L Campbell
February 1994, The Journal of biological chemistry,
Copied contents to your clipboard!