Effects of intracellular amino acid concentrations, cyclic AMP, and dexamethasone on lysosomal proteolysis in primary cultures of perinatal rat hepatocytes. 1993

P J Blommaart, and D Zonneveld, and A J Meijer, and W H Lamers
Departments of Anatomy and Embryology, University of Amsterdam, The Netherlands.

We have studied factors regulating the rate of protein degradation in cultured hepatocytes obtained from 17-day-old fetal, 7-day-old suckling, and 20-day-old weanling rats. At all three stages of development 60-70% of protein degradation was sensitive to inhibition by amino acids and 3-methyladenine, an inhibitor of macroautophagy, indicating a major role of the lysosomes in proteolysis under these conditions. A combination of dibutyryl cyclic AMP and dexamethasone strongly stimulated proteolysis in hepatocytes from weanling, but not from fetal and suckling rats. The stimulatory effect of these compounds was eliminated at high amino acid concentrations in the culture medium. Cultured perinatal hepatocytes responded to exposure to dibutyryl cyclic AMP and dexamethasone by de novo synthesis of mRNA for carbamoyl-phosphate synthase and for phosphoenolpyruvate carboxykinase, demonstrating that the developmental change in the effect of dibutyryl cyclic AMP and dexamethasone on proteolysis was due to a developmental change in the regulation of proteolysis. An analysis of the changes in intracellular amino acid concentrations in response to variations in the extracellular amino acid concentrations at all three stages of development showed that of all amino acids that could be identified, only Ile, Leu, Lys, Phe, and Tyr are implicated as possible regulators of hepatic proteolysis. Dibutyryl cyclic AMP and dexamethasone did not affect the intracellular concentrations of these amino acids, showing that hormonal regulation of proteolysis is not mediated by changes in intracellular concentrations of these amino acids. It is concluded that the lack of sensitivity of the proteolytic system to catabolic hormones in the period around birth, combined with higher circulating plasma amino acid concentrations, are mechanisms contributing to the low rate of intrahepatic proteolysis in vivo in the perinatal period and thus to the rapid growth of the liver in this period.

UI MeSH Term Description Entries
D008025 Ligases A class of enzymes that catalyze the formation of a bond between two substrate molecules, coupled with the hydrolysis of a pyrophosphate bond in ATP or a similar energy donor. (Dorland, 28th ed) EC 6. Ligase,Synthetases,Synthetase
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008247 Lysosomes A class of morphologically heterogeneous cytoplasmic particles in animal and plant tissues characterized by their content of hydrolytic enzymes and the structure-linked latency of these enzymes. The intracellular functions of lysosomes depend on their lytic potential. The single unit membrane of the lysosome acts as a barrier between the enzymes enclosed in the lysosome and the external substrate. The activity of the enzymes contained in lysosomes is limited or nil unless the vesicle in which they are enclosed is ruptured or undergoes MEMBRANE FUSION. (From Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed). Autolysosome,Autolysosomes,Lysosome
D010729 Phosphoenolpyruvate Carboxykinase (GTP) An enzyme of the lyase class that catalyzes the conversion of GTP and oxaloacetate to GDP, phosphoenolpyruvate, and carbon dioxide. This reaction is part of gluconeogenesis in the liver. The enzyme occurs in both the mitochondria and cytosol of mammalian liver. (From Dorland, 27th ed) EC 4.1.1.32. GTP-Dependent Phosphoenolpyruvate Carboxykinase,Carboxykinase, GTP-Dependent Phosphoenolpyruvate,GTP Dependent Phosphoenolpyruvate Carboxykinase,Phosphoenolpyruvate Carboxykinase, GTP-Dependent
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003907 Dexamethasone An anti-inflammatory 9-fluoro-glucocorticoid. Hexadecadrol,Decaject,Decaject-L.A.,Decameth,Decaspray,Dexasone,Dexpak,Hexadrol,Maxidex,Methylfluorprednisolone,Millicorten,Oradexon,Decaject L.A.
D003994 Bucladesine A cyclic nucleotide derivative that mimics the action of endogenous CYCLIC AMP and is capable of permeating the cell membrane. It has vasodilator properties and is used as a cardiac stimulant. (From Merck Index, 11th ed) Dibutyryl Adenosine-3',5'-Monophosphate,Dibutyryl Cyclic AMP,(But)(2) cAMP,Bucladesine, Barium (1:1) Salt,Bucladesine, Disodium Salt,Bucladesine, Monosodium Salt,Bucladesine, Sodium Salt,DBcAMP,Dibutyryl Adenosine 3,5 Monophosphate,N',O'-Dibutyryl-cAMP,N(6),0(2')-Dibutyryl Cyclic AMP,AMP, Dibutyryl Cyclic,Adenosine-3',5'-Monophosphate, Dibutyryl,Cyclic AMP, Dibutyryl,Dibutyryl Adenosine 3',5' Monophosphate,Disodium Salt Bucladesine,Monosodium Salt Bucladesine,N',O' Dibutyryl cAMP,Sodium Salt Bucladesine
D000225 Adenine A purine base and a fundamental unit of ADENINE NUCLEOTIDES. Vitamin B 4,4, Vitamin B,B 4, Vitamin
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic

Related Publications

P J Blommaart, and D Zonneveld, and A J Meijer, and W H Lamers
June 1992, Experimental cell research,
P J Blommaart, and D Zonneveld, and A J Meijer, and W H Lamers
November 1983, Journal of cellular physiology,
P J Blommaart, and D Zonneveld, and A J Meijer, and W H Lamers
January 1977, Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme,
P J Blommaart, and D Zonneveld, and A J Meijer, and W H Lamers
January 1981, Acta biologica et medica Germanica,
P J Blommaart, and D Zonneveld, and A J Meijer, and W H Lamers
October 1998, Cellular signalling,
P J Blommaart, and D Zonneveld, and A J Meijer, and W H Lamers
March 1985, Archives of biochemistry and biophysics,
P J Blommaart, and D Zonneveld, and A J Meijer, and W H Lamers
February 1983, The Biochemical journal,
P J Blommaart, and D Zonneveld, and A J Meijer, and W H Lamers
July 1995, Biological & pharmaceutical bulletin,
P J Blommaart, and D Zonneveld, and A J Meijer, and W H Lamers
January 1985, Hepatology (Baltimore, Md.),
P J Blommaart, and D Zonneveld, and A J Meijer, and W H Lamers
October 1984, Journal of cellular physiology,
Copied contents to your clipboard!