Expression of the met-receptor and its ligand, HGF-SF during mouse embryogenesis. 1993

E Sonnenberg, and K M Weidner, and C Birchmeier
Max-Delbrück-Laboratorium in der Max-Planck-Gesellschaft, Köln, Germany.

We have determined the expression patterns of the met proto-oncogene and the gene which encodes its ligand, scatter factor/hepatocyte growth factor (HGF-SF), during mouse embryogenesis. A recurring pattern of expression was found in a variety of different organs: expression of met in specific epithelial cells, and transcripts for the HGF-SF gene in mesenchymal cells in close vicinity. Exchange of signals between mesenchymal and epithelial cell compartments are important in morphogenesis and differentiation of a variety of embryonal organs, although their molecular basis has not been elucidated. The observed expression of met and HGF-SF during development suggests that this receptor and its specific ligand might play a role in such processes. In addition to this distinct pattern, expression of met in certain epithelia and HGF-SF in the surrounding mesenchyme, we find met transcripts in neural, endothelial and muscle cells and transcripts for HGF-SF in neural and muscle tissue. In no instance did we observe both, transcripts for the receptor and the ligand, in the same cells. This suggests a paracrine mode of action for HGF-SF and its receptor during development. This exchange of signals might thus regulate a variety of processes, notably among them mesenchymal epithelial interactions.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008168 Lung Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood. Lungs
D008648 Mesoderm The middle germ layer of an embryo derived from three paired mesenchymal aggregates along the neural tube. Mesenchyme,Dorsal Mesoderm,Intermediate Mesoderm,Lateral Plate Mesoderm,Mesenchyma,Paraxial Mesoderm,Dorsal Mesoderms,Intermediate Mesoderms,Lateral Plate Mesoderms,Mesenchymas,Mesoderm, Dorsal,Mesoderm, Intermediate,Mesoderm, Lateral Plate,Mesoderm, Paraxial,Mesoderms, Dorsal,Mesoderms, Intermediate,Mesoderms, Lateral Plate,Mesoderms, Paraxial,Paraxial Mesoderms,Plate Mesoderm, Lateral,Plate Mesoderms, Lateral
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009805 Odontogenesis The process of TOOTH formation. It is divided into several stages including: the dental lamina stage, the bud stage, the cap stage, and the bell stage. Odontogenesis includes the production of tooth enamel (AMELOGENESIS), dentin (DENTINOGENESIS), and dental cementum (CEMENTOGENESIS). Odontogeneses
D011518 Proto-Oncogene Proteins Products of proto-oncogenes. Normally they do not have oncogenic or transforming properties, but are involved in the regulation or differentiation of cell growth. They often have protein kinase activity. Cellular Proto-Oncogene Proteins,c-onc Proteins,Proto Oncogene Proteins, Cellular,Proto-Oncogene Products, Cellular,Cellular Proto Oncogene Proteins,Cellular Proto-Oncogene Products,Proto Oncogene Products, Cellular,Proto Oncogene Proteins,Proto-Oncogene Proteins, Cellular,c onc Proteins
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D004622 Embryo, Mammalian The entity of a developing mammal (MAMMALS), generally from the cleavage of a ZYGOTE to the end of embryonic differentiation of basic structures. For the human embryo, this represents the first two months of intrauterine development preceding the stages of the FETUS. Embryonic Structures, Mammalian,Mammalian Embryo,Mammalian Embryo Structures,Mammalian Embryonic Structures,Embryo Structure, Mammalian,Embryo Structures, Mammalian,Embryonic Structure, Mammalian,Embryos, Mammalian,Mammalian Embryo Structure,Mammalian Embryonic Structure,Mammalian Embryos,Structure, Mammalian Embryo,Structure, Mammalian Embryonic,Structures, Mammalian Embryo,Structures, Mammalian Embryonic
D004848 Epithelium The layers of EPITHELIAL CELLS which cover the inner and outer surfaces of the cutaneous, mucus, and serous tissues and glands of the body. Mesothelium,Epithelial Tissue,Mesothelial Tissue,Epithelial Tissues,Mesothelial Tissues,Tissue, Epithelial,Tissue, Mesothelial,Tissues, Epithelial,Tissues, Mesothelial

Related Publications

E Sonnenberg, and K M Weidner, and C Birchmeier
January 1997, Cancer investigation,
E Sonnenberg, and K M Weidner, and C Birchmeier
December 2008, Developmental dynamics : an official publication of the American Association of Anatomists,
E Sonnenberg, and K M Weidner, and C Birchmeier
October 1998, Trends in cell biology,
E Sonnenberg, and K M Weidner, and C Birchmeier
March 2001, Trends in microbiology,
E Sonnenberg, and K M Weidner, and C Birchmeier
July 2007, Histopathology,
E Sonnenberg, and K M Weidner, and C Birchmeier
January 1997, Ciba Foundation symposium,
E Sonnenberg, and K M Weidner, and C Birchmeier
January 1997, Ciba Foundation symposium,
E Sonnenberg, and K M Weidner, and C Birchmeier
January 2005, Cell research,
E Sonnenberg, and K M Weidner, and C Birchmeier
January 1993, EXS,
Copied contents to your clipboard!