Low frequency EPR of Pseudomonas aeruginosa azurin. Analysis of ligand superhyperfine structure from a type 1 copper site. 1993

W E Antholine, and P M Hanna, and D R McMillin
National Biomedical ESR Center, Biophysics Research Institute, Medical College of Wisconsin, Milwaukee 53226.

The type 1 copper in Pseudomonas aeruginosa azurin was studied by electron paramagnetic resonance (EPR) spectroscopy at low microwave frequencies. Partially resolved ligand hyperfine structure was observed in the perpendicular region of the spectra at both S-band (2.4 GHz) and L-band (1.1 GHz). A trial and error method, requiring several hundred simulations, has been used to simulate the low frequency EPR data and yield an optimum value of 30 MHz for ACUx, more than one half that previously reported. The fit between the simulated and experimental data is sensitive to changes in the Euler angles and, in particular, to the angle alpha which rotates the Cu A-tensor about the z-axis. Thus, the A- and g-tensors for copper in P. aeruginosa azurin do not appear to be coincident. A value for the Euler angle beta of at least 10 degrees does not disturb the fit between the simulated and experimental data. These studies demonstrate the advantage of evaluating EPR parameters from simulations at more than one frequency, especially at low frequencies where ligand superhyperfine structure may be resolved for type 1 copper.

UI MeSH Term Description Entries
D008024 Ligands A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) Ligand
D011550 Pseudomonas aeruginosa A species of gram-negative, aerobic, rod-shaped bacteria commonly isolated from clinical specimens (wound, burn, and urinary tract infections). It is also found widely distributed in soil and water. P. aeruginosa is a major agent of nosocomial infection. Bacillus aeruginosus,Bacillus pyocyaneus,Bacterium aeruginosum,Bacterium pyocyaneum,Micrococcus pyocyaneus,Pseudomonas polycolor,Pseudomonas pyocyanea
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D003300 Copper A heavy metal trace element with the atomic symbol Cu, atomic number 29, and atomic weight 63.55. Copper-63,Copper 63
D004578 Electron Spin Resonance Spectroscopy A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING. ENDOR,Electron Nuclear Double Resonance,Electron Paramagnetic Resonance,Paramagnetic Resonance,Electron Spin Resonance,Paramagnetic Resonance, Electron,Resonance, Electron Paramagnetic,Resonance, Electron Spin,Resonance, Paramagnetic
D001400 Azurin A bacterial protein from Pseudomonas, Bordetella, or Alcaligenes which operates as an electron transfer unit associated with the cytochrome chain. The protein has a molecular weight of approximately 16,000, contains a single copper atom, is intensively blue, and has a fluorescence emission band centered at 308nm.
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D001703 Biophysics The study of PHYSICAL PHENOMENA and PHYSICAL PROCESSES as applied to living things. Mechanobiology
D015394 Molecular Structure The location of the atoms, groups or ions relative to one another in a molecule, as well as the number, type and location of covalent bonds. Structure, Molecular,Molecular Structures,Structures, Molecular
D055592 Biophysical Phenomena The physical characteristics and processes of biological systems. Biophysical Concepts,Biophysical Processes,Biophysical Phenomenon,Biophysical Process,Biophysical Concept,Concept, Biophysical,Concepts, Biophysical,Phenomena, Biophysical,Phenomenon, Biophysical,Process, Biophysical,Processes, Biophysical

Related Publications

W E Antholine, and P M Hanna, and D R McMillin
January 2014, Proceedings of the National Academy of Sciences of the United States of America,
W E Antholine, and P M Hanna, and D R McMillin
September 1989, Photochemistry and photobiology,
W E Antholine, and P M Hanna, and D R McMillin
March 1989, FEBS letters,
W E Antholine, and P M Hanna, and D R McMillin
March 1995, Acta crystallographica. Section D, Biological crystallography,
W E Antholine, and P M Hanna, and D R McMillin
April 2011, Journal of the American Chemical Society,
W E Antholine, and P M Hanna, and D R McMillin
September 1986, Biochimica et biophysica acta,
Copied contents to your clipboard!