Transient increase of calcium in synaptic vesicles after stimulation. 1993

A Parducz, and Y Dunant
Institute of Biophysics, Biological Research Center, Hungarian Academy of Sciences, Szeged.

Function-dependent changes of calcium distribution were studied in the nerve-electroplaque synapses of Torpedo marmorata before and after the transmission of a nerve impulse. For the cytochemical demonstration of calcium at the ultrastructural level the oxalate-pyroantimonate technique was combined with electron spectroscopic imaging. Cholinergic synapses of the electric organ were stimulated in the presence of 4-aminopyridine, a drug which powerfully potentiates transmitter release. A single stimulus evoked a giant electrical discharge, which was followed by a long refractory period. Calcium cytochemistry was performed by fixing the tissue at four well defined functional states: (i) before and (ii) immediately after the giant discharge, and (iii) at 1 min or (iv) at 30 min of subsequent rest, corresponding to partial and complete functional recovery, respectively. In the non-stimulated synapses about 20% of synaptic vesicles contained small electron-dense precipitates. The element specific mapping by electron spectroscopic imaging clearly showed that calcium was present in the vesicular granules. The volume density of synaptic vesicles did not change among the four experimental states, but we detected a significant increase in the proportion of calcium containing vesicles at 1 min after the giant discharge. The vesicular calcium accumulation was transient: it returned to the control value at the end of the recovery period. Our data suggest that the synaptic vesicles play a role in sequestering the excess calcium which enters the nerve terminal during stimulation.

UI MeSH Term Description Entries
D008297 Male Males
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004557 Electric Organ In about 250 species of electric fishes, modified muscle fibers forming disklike multinucleate plates arranged in stacks like batteries in series and embedded in a gelatinous matrix. A large torpedo ray may have half a million plates. Muscles in different parts of the body may be modified, i.e., the trunk and tail in the electric eel, the hyobranchial apparatus in the electric ray, and extrinsic eye muscles in the stargazers. Powerful electric organs emit pulses in brief bursts several times a second. They serve to stun prey and ward off predators. A large torpedo ray can produce of shock of more than 200 volts, capable of stunning a human. (Storer et al., General Zoology, 6th ed, p672) Electric Organs,Organ, Electric,Organs, Electric
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D005260 Female Females
D006651 Histocytochemistry Study of intracellular distribution of chemicals, reaction sites, enzymes, etc., by means of staining reactions, radioactive isotope uptake, selective metal distribution in electron microscopy, or other methods. Cytochemistry
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

A Parducz, and Y Dunant
July 2021, Trends in neurosciences,
A Parducz, and Y Dunant
June 2022, Current opinion in neurobiology,
A Parducz, and Y Dunant
September 1980, Journal de physiologie,
A Parducz, and Y Dunant
December 1994, Journal of neuroscience methods,
A Parducz, and Y Dunant
January 1984, The Journal of biological chemistry,
A Parducz, and Y Dunant
January 2016, Journal of neurophysiology,
Copied contents to your clipboard!