Nuclear localization of soluble CTP:phosphocholine cytidylyltransferase. 1993

Y Wang, and T D Sweitzer, and P A Weinhold, and C Kent
Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor 49109.

The soluble form of CTP:phosphocholine cytidylyltransferase, which has previously been assumed to be cytosolic, has been localized to the nucleus of several cell types. Indirect immunofluorescence microscopy indicated a nuclear location in HepG2, NIH-3T3, and L-cells. A comparison of the fluorescence pattern of wild-type CHO cells with a cytidylyltransferase-deficient mutant provided genetic evidence that cytidylyltransferase is nuclear in CHO cells. The enzyme is also predominantly nuclear in rat liver, as revealed by staining frozen sections of that tissue. When L-cells were fractionated by enucleation, over 95% of cytidylyltransferase activity was found in the nuclear fraction, providing biochemical evidence for a nuclear location in these cells. In light of the demonstration that the membrane-bound cytidylyltransferase in CHO cells is associated with the nuclear envelope (Watkins, J. D., and Kent, C. (1992) J. Biol. Chem. 267, 5686-5692), these results suggest that this enzyme is predominantly an intranuclear enzyme.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D009687 Nuclear Proteins Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus. Nucleolar Protein,Nucleolar Proteins,Nuclear Protein,Protein, Nuclear,Protein, Nucleolar,Proteins, Nuclear,Proteins, Nucleolar
D009713 Nucleotidyltransferases A class of enzymes that transfers nucleotidyl residues. EC 2.7.7. Nucleotidyltransferase
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015153 Blotting, Western Identification of proteins or peptides that have been electrophoretically separated by blot transferring from the electrophoresis gel to strips of nitrocellulose paper, followed by labeling with antibody probes. Immunoblotting, Western,Western Blotting,Western Immunoblotting,Blot, Western,Immunoblot, Western,Western Blot,Western Immunoblot,Blots, Western,Blottings, Western,Immunoblots, Western,Immunoblottings, Western,Western Blots,Western Blottings,Western Immunoblots,Western Immunoblottings
D016466 CHO Cells CELL LINE derived from the ovary of the Chinese hamster, Cricetulus griseus (CRICETULUS). The species is a favorite for cytogenetic studies because of its small chromosome number. The cell line has provided model systems for the study of genetic alterations in cultured mammalian cells. CHO Cell,Cell, CHO,Cells, CHO
D016475 3T3 Cells Cell lines whose original growing procedure consisted being transferred (T) every 3 days and plated at 300,000 cells per plate (J Cell Biol 17:299-313, 1963). Lines have been developed using several different strains of mice. Tissues are usually fibroblasts derived from mouse embryos but other types and sources have been developed as well. The 3T3 lines are valuable in vitro host systems for oncogenic virus transformation studies, since 3T3 cells possess a high sensitivity to CONTACT INHIBITION. 3T3 Cell,Cell, 3T3,Cells, 3T3

Related Publications

Y Wang, and T D Sweitzer, and P A Weinhold, and C Kent
January 1995, The Journal of biological chemistry,
Y Wang, and T D Sweitzer, and P A Weinhold, and C Kent
September 1997, Biochimica et biophysica acta,
Y Wang, and T D Sweitzer, and P A Weinhold, and C Kent
November 1991, Biochimica et biophysica acta,
Y Wang, and T D Sweitzer, and P A Weinhold, and C Kent
February 1986, Biochimica et biophysica acta,
Y Wang, and T D Sweitzer, and P A Weinhold, and C Kent
May 2020, Molecular biology of the cell,
Y Wang, and T D Sweitzer, and P A Weinhold, and C Kent
July 2002, Molecular and cellular biology,
Y Wang, and T D Sweitzer, and P A Weinhold, and C Kent
January 2024, Molecular biology of the cell,
Y Wang, and T D Sweitzer, and P A Weinhold, and C Kent
August 2015, Molecular biology of the cell,
Copied contents to your clipboard!