Antibodies specific for alpha-subunit subtypes of GABAA receptors reveal brain regional heterogeneity. 1993

S Endo, and R W Olsen
Department of Pharmacology, School of Medicine, University of California, Los Angeles 90024-1735.

Antisera were produced in rabbits against synthetic peptides based on subtype-specific regions of the cDNA sequences of the alpha 1, alpha 2, alpha 3, and alpha 4 (also termed alpha 5) subunits of mammalian GABAA receptors. The antigen peptides were chosen from the putative cytoplasmic loop between the proposed third and fourth membrane spanning helices; they were not only subtype-specific sequences, but also their hydrophilicity and predicted secondary structures suggested high potential antigenicity. In all cases, antipeptide antisera recognized on western blots the corresponding alpha-subunit polypeptide of the GABAA receptors purified from bovine brain by benzodiazepine-affinity chromatography, and were able to immunoprecipitate binding activity from detergent-solubilized purified receptors. The four antisera each recognized a unique polypeptide, and only one, in the purified receptor, with alpha 1, alpha 2, alpha 3, and alpha 4 identified at 51, 52, 56, and 57 kDa, respectively. This represents the first identification of the alpha 4 gene product on a gel. Both the relative amount of staining in immunoblots and the fraction of receptor binding that could be immunoprecipitated by saturating concentrations of each of the four subtype-specific antibodies varied in a consistent manner between receptors purified from different brain regions. Thus, cerebral cortex receptor contained all four alpha polypeptides on western blots, and significant activity could be precipitated by all four. Hippocampal receptor lacked alpha 3 immunoreactivity on blotting and by immunoprecipitation; alpha 1 was less, whereas both alpha 2 and alpha 4 were more abundant in hippocampus than in cortex by both techniques. Cerebellum receptor contained only alpha 1 of the four alpha subunits tested, and the anti-alpha 1 antibodies immunoprecipitated > 90% of the binding activity. The variable amounts of staining and immunoprecipitation from the three brain areas by the four antisera demonstrate the presence of heterooligomeric receptor complexes with different alpha-subunit constituents in cortex, hippocampus, and cerebellum. The sum of cortical receptor activity precipitated individually by the four anti-alpha antisera was > 150%, indicating that some heterooligomers are likely to contain more than one class of alpha subtype, although most receptor complexes probably contain only one alpha subtype. These alpha-subunit subtype-specific antibodies should be useful in analyzing structure, function, and localization of GABAA/benzodiazepine receptors in mammalian brain.

UI MeSH Term Description Entries
D007163 Immunosorbent Techniques Techniques for removal by adsorption and subsequent elution of a specific antibody or antigen using an immunosorbent containing the homologous antigen or antibody. Immunoadsorbent Techniques,Immunoadsorbent Technics,Immunosorbent Technics,Immunoadsorbent Technic,Immunoadsorbent Technique,Immunosorbent Technic,Immunosorbent Technique,Technic, Immunoadsorbent,Technic, Immunosorbent,Technics, Immunoadsorbent,Technics, Immunosorbent,Technique, Immunoadsorbent,Technique, Immunosorbent,Techniques, Immunoadsorbent,Techniques, Immunosorbent
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009118 Muscimol A neurotoxic isoxazole isolated from species of AMANITA. It is obtained by decarboxylation of IBOTENIC ACID. Muscimol is a potent agonist of GABA-A RECEPTORS and is used mainly as an experimental tool in animal and tissue studies. Agarin,Pantherine
D011963 Receptors, GABA-A Cell surface proteins which bind GAMMA-AMINOBUTYRIC ACID and contain an integral membrane chloride channel. Each receptor is assembled as a pentamer from a pool of at least 19 different possible subunits. The receptors belong to a superfamily that share a common CYSTEINE loop. Benzodiazepine-Gaba Receptors,GABA-A Receptors,Receptors, Benzodiazepine,Receptors, Benzodiazepine-GABA,Receptors, Diazepam,Receptors, GABA-Benzodiazepine,Receptors, Muscimol,Benzodiazepine Receptor,Benzodiazepine Receptors,Benzodiazepine-GABA Receptor,Diazepam Receptor,Diazepam Receptors,GABA(A) Receptor,GABA-A Receptor,GABA-A Receptor alpha Subunit,GABA-A Receptor beta Subunit,GABA-A Receptor delta Subunit,GABA-A Receptor epsilon Subunit,GABA-A Receptor gamma Subunit,GABA-A Receptor rho Subunit,GABA-Benzodiazepine Receptor,GABA-Benzodiazepine Receptors,Muscimol Receptor,Muscimol Receptors,delta Subunit, GABA-A Receptor,epsilon Subunit, GABA-A Receptor,gamma-Aminobutyric Acid Subtype A Receptors,Benzodiazepine GABA Receptor,Benzodiazepine Gaba Receptors,GABA A Receptor,GABA A Receptor alpha Subunit,GABA A Receptor beta Subunit,GABA A Receptor delta Subunit,GABA A Receptor epsilon Subunit,GABA A Receptor gamma Subunit,GABA A Receptor rho Subunit,GABA A Receptors,GABA Benzodiazepine Receptor,GABA Benzodiazepine Receptors,Receptor, Benzodiazepine,Receptor, Benzodiazepine-GABA,Receptor, Diazepam,Receptor, GABA-A,Receptor, GABA-Benzodiazepine,Receptor, Muscimol,Receptors, Benzodiazepine GABA,Receptors, GABA A,Receptors, GABA Benzodiazepine,delta Subunit, GABA A Receptor,epsilon Subunit, GABA A Receptor,gamma Aminobutyric Acid Subtype A Receptors
D001923 Brain Chemistry Changes in the amounts of various chemicals (neurotransmitters, receptors, enzymes, and other metabolites) specific to the area of the central nervous system contained within the head. These are monitored over time, during sensory stimulation, or under different disease states. Chemistry, Brain,Brain Chemistries,Chemistries, Brain
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002531 Cerebellum The part of brain that lies behind the BRAIN STEM in the posterior base of skull (CRANIAL FOSSA, POSTERIOR). It is also known as the "little brain" with convolutions similar to those of CEREBRAL CORTEX, inner white matter, and deep cerebellar nuclei. Its function is to coordinate voluntary movements, maintain balance, and learn motor skills. Cerebella,Corpus Cerebelli,Parencephalon,Cerebellums,Parencephalons
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums

Related Publications

S Endo, and R W Olsen
February 1996, Molecular neurobiology,
S Endo, and R W Olsen
December 1989, Neuron,
S Endo, and R W Olsen
April 2006, Journal of clinical sleep medicine : JCSM : official publication of the American Academy of Sleep Medicine,
S Endo, and R W Olsen
November 1988, Journal of neurochemistry,
S Endo, and R W Olsen
April 1997, Journal of neurochemistry,
S Endo, and R W Olsen
January 1996, Neuropharmacology,
S Endo, and R W Olsen
January 1992, Clinical neuropharmacology,
Copied contents to your clipboard!