Molecular characterization of receptors for human interleukin-8, GRO/melanoma growth-stimulatory activity and neutrophil activating peptide-2. 1993

D P Cerretti, and C J Kozlosky, and T Vanden Bos, and N Nelson, and D P Gearing, and M P Beckmann
Immunex Corporation, Seattle, WA 98101.

Interleukin-8 (IL-8), neutrophil activating peptide-2 (NAP-2), and growth regulated gene (GRO, also known as melanoma growth stimulatory activity) are members of a family of peptides which are chemotactic agents for inflammatory cells such as neutrophils. Receptors have been identified for IL-8, GRO and NAP-2 on human neutrophils and granulocytic cell lines, and it has been observed that these cytokines can cross-compete for binding to a common receptor. Using the recently characterized rabbit IL-8 receptor as a probe, two classes of cDNAs, termed type 1 and type 2, were isolated from a human neutrophil library. The type 1 receptor binds only IL-8 while the type 2 receptor binds IL-8, GRO and NAP-2 at high affinity when respective cDNAs are expressed in COS-7 cells. The two cDNAs encode proteins that have an amino acid sequence identity of 77% while the type 1 and 2 receptors have an identity of 84 and 74% with the rabbit IL-8 receptor. These receptors also show significant homology with receptors for other chemotactic agents and with potential coding regions from the human cytomegalovirus genome.

UI MeSH Term Description Entries
D007951 Leukemia, Myeloid Form of leukemia characterized by an uncontrolled proliferation of the myeloid lineage and their precursors (MYELOID PROGENITOR CELLS) in the bone marrow and other sites. Granulocytic Leukemia,Leukemia, Granulocytic,Leukemia, Myelocytic,Leukemia, Myelogenous,Myelocytic Leukemia,Myelogenous Leukemia,Myeloid Leukemia,Leukemia, Monocytic, Chronic,Monocytic Leukemia, Chronic,Chronic Monocytic Leukemia,Chronic Monocytic Leukemias,Granulocytic Leukemias,Leukemia, Chronic Monocytic,Leukemias, Chronic Monocytic,Leukemias, Granulocytic,Leukemias, Myelocytic,Leukemias, Myelogenous,Leukemias, Myeloid,Monocytic Leukemias, Chronic,Myelocytic Leukemias,Myelogenous Leukemias,Myeloid Leukemias
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009363 Neoplasm Proteins Proteins whose abnormal expression (gain or loss) are associated with the development, growth, or progression of NEOPLASMS. Some neoplasm proteins are tumor antigens (ANTIGENS, NEOPLASM), i.e. they induce an immune reaction to their tumor. Many neoplasm proteins have been characterized and are used as tumor markers (BIOMARKERS, TUMOR) when they are detectable in cells and body fluids as monitors for the presence or growth of tumors. Abnormal expression of ONCOGENE PROTEINS is involved in neoplastic transformation, whereas the loss of expression of TUMOR SUPPRESSOR PROTEINS is involved with the loss of growth control and progression of the neoplasm. Proteins, Neoplasm
D009504 Neutrophils Granular leukocytes having a nucleus with three to five lobes connected by slender threads of chromatin, and cytoplasm containing fine inconspicuous granules and stainable by neutral dyes. LE Cells,Leukocytes, Polymorphonuclear,Polymorphonuclear Leukocytes,Polymorphonuclear Neutrophils,Neutrophil Band Cells,Band Cell, Neutrophil,Cell, LE,LE Cell,Leukocyte, Polymorphonuclear,Neutrophil,Neutrophil Band Cell,Neutrophil, Polymorphonuclear,Polymorphonuclear Leukocyte,Polymorphonuclear Neutrophil
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D011971 Receptors, Immunologic Cell surface molecules on cells of the immune system that specifically bind surface molecules or messenger molecules and trigger changes in the behavior of cells. Although these receptors were first identified in the immune system, many have important functions elsewhere. Immunologic Receptors,Immunologic Receptor,Immunological Receptors,Receptor, Immunologic,Receptors, Immunological
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002630 Chemotactic Factors Chemical substances that attract or repel cells. The concept denotes especially those factors released as a result of tissue injury, microbial invasion, or immunologic activity, that attract LEUKOCYTES; MACROPHAGES; or other cells to the site of infection or insult. Chemoattractant,Chemotactic Factor,Chemotaxin,Chemotaxins,Cytotaxinogens,Cytotaxins,Macrophage Chemotactic Factor,Chemoattractants,Chemotactic Factors, Macrophage,Macrophage Chemotactic Factors,Chemotactic Factor, Macrophage,Factor, Chemotactic,Factor, Macrophage Chemotactic

Related Publications

D P Cerretti, and C J Kozlosky, and T Vanden Bos, and N Nelson, and D P Gearing, and M P Beckmann
June 1991, The Journal of biological chemistry,
D P Cerretti, and C J Kozlosky, and T Vanden Bos, and N Nelson, and D P Gearing, and M P Beckmann
January 1997, The Journal of biological chemistry,
D P Cerretti, and C J Kozlosky, and T Vanden Bos, and N Nelson, and D P Gearing, and M P Beckmann
November 1992, Proceedings of the National Academy of Sciences of the United States of America,
D P Cerretti, and C J Kozlosky, and T Vanden Bos, and N Nelson, and D P Gearing, and M P Beckmann
May 1990, The Journal of experimental medicine,
D P Cerretti, and C J Kozlosky, and T Vanden Bos, and N Nelson, and D P Gearing, and M P Beckmann
October 1996, The Journal of biological chemistry,
D P Cerretti, and C J Kozlosky, and T Vanden Bos, and N Nelson, and D P Gearing, and M P Beckmann
March 1991, Biochemistry,
D P Cerretti, and C J Kozlosky, and T Vanden Bos, and N Nelson, and D P Gearing, and M P Beckmann
January 1996, European journal of biochemistry,
D P Cerretti, and C J Kozlosky, and T Vanden Bos, and N Nelson, and D P Gearing, and M P Beckmann
July 1993, The Journal of biological chemistry,
Copied contents to your clipboard!