N-terminal arginylation and ubiquitin-mediated proteolysis in nerve regeneration. 1993

G Chakraborty, and N A Ingoglia
Department of Physiology, UMDNJ New Jersey Medical School, Newark 07103.

Damaged sciatic nerves of rats respond to injury within minutes by activating reactions that result in the transfer RNA-mediated posttranslational addition of several amino acids to a variety of cytoplasmic proteins. For the most part, the site of addition of individual amino acids and the identity of the target proteins is not known. However, arginine, one of the amino acids added in greatest amounts, has been shown to be covalently linked to the N-terminus of acceptor proteins. In other simpler eukaryotic cells, N-terminal arginylation results in degradation of the arginylated proteins via the ubiquitin proteolytic pathway. Recent experiments have shown that when proteins, obtained from sciatic nerves 2 h after injury, are arginylated in vitro, they form high molecular weight aggregates. Other experiments have shown that these arginylated proteins are immunoreactive to a monoclonal antibody to ubiquitin. These findings suggest that following injury to the sciatic nerve, proteins which are arginylated are candidates for ubiquitin mediated proteolysis. Injury to a nerve incapable of regeneration without experimental intervention, the rat optic nerve, does not result in activation of the arginylation reactions until 6 days following injury. Based on the temporal differences in response to injury of sciatic and optic nerves (2 h vs. 6 days), we propose that the lack of arginylation following injury to the CNS is related to its inability to mount a regenerative response. The association of Arg modification of damaged proteins with the ubiquitin-mediated degradation of those proteins, suggests that regenerative failure in the CNS may be related, in part, to a failure to degrade intracellular proteins at the site of injury.

UI MeSH Term Description Entries
D009416 Nerve Regeneration Renewal or physiological repair of damaged nerve tissue. Nerve Tissue Regeneration,Nervous Tissue Regeneration,Neural Tissue Regeneration,Nerve Tissue Regenerations,Nervous Tissue Regenerations,Neural Tissue Regenerations,Regeneration, Nerve,Regeneration, Nerve Tissue,Regeneration, Nervous Tissue,Regeneration, Neural Tissue,Tissue Regeneration, Nerve,Tissue Regeneration, Nervous,Tissue Regeneration, Neural
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001120 Arginine An essential amino acid that is physiologically active in the L-form. Arginine Hydrochloride,Arginine, L-Isomer,DL-Arginine Acetate, Monohydrate,L-Arginine,Arginine, L Isomer,DL Arginine Acetate, Monohydrate,Hydrochloride, Arginine,L Arginine,L-Isomer Arginine,Monohydrate DL-Arginine Acetate
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D012343 RNA, Transfer The small RNA molecules, 73-80 nucleotides long, that function during translation (TRANSLATION, GENETIC) to align AMINO ACIDS at the RIBOSOMES in a sequence determined by the mRNA (RNA, MESSENGER). There are about 30 different transfer RNAs. Each recognizes a specific CODON set on the mRNA through its own ANTICODON and as aminoacyl tRNAs (RNA, TRANSFER, AMINO ACYL), each carries a specific amino acid to the ribosome to add to the elongating peptide chains. Suppressor Transfer RNA,Transfer RNA,tRNA,RNA, Transfer, Suppressor,Transfer RNA, Suppressor,RNA, Suppressor Transfer
D012584 Sciatic Nerve A nerve which originates in the lumbar and sacral spinal cord (L4 to S3) and supplies motor and sensory innervation to the lower extremity. The sciatic nerve, which is the main continuation of the sacral plexus, is the largest nerve in the body. It has two major branches, the TIBIAL NERVE and the PERONEAL NERVE. Nerve, Sciatic,Nerves, Sciatic,Sciatic Nerves
D014452 Ubiquitins A family of proteins that are structurally-related to Ubiquitin. Ubiquitins and ubiquitin-like proteins participate in diverse cellular functions, such as protein degradation and HEAT-SHOCK RESPONSE, by conjugation to other proteins. Ubiquitin-Like Protein,Ubiquitin-Like Proteins,Protein, Ubiquitin-Like,Proteins, Ubiquitin-Like,Ubiquitin Like Protein,Ubiquitin Like Proteins

Related Publications

G Chakraborty, and N A Ingoglia
March 2018, Proceedings of the National Academy of Sciences of the United States of America,
G Chakraborty, and N A Ingoglia
December 1997, Neurochemical research,
G Chakraborty, and N A Ingoglia
January 2018, Current protein & peptide science,
G Chakraborty, and N A Ingoglia
January 2020, Journal of integrative plant biology,
G Chakraborty, and N A Ingoglia
November 2019, Scientific reports,
G Chakraborty, and N A Ingoglia
January 1991, Biomedica biochimica acta,
G Chakraborty, and N A Ingoglia
November 1996, Nature medicine,
G Chakraborty, and N A Ingoglia
January 2000, Molecular genetics and metabolism,
G Chakraborty, and N A Ingoglia
January 1999, Molecular neurobiology,
Copied contents to your clipboard!