Wild-type p53 mediates apoptosis by E1A, which is inhibited by E1B. 1993

M Debbas, and E White
Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey 08854.

Transformation of primary rodent cells by the adenovirus E1A and E1B oncogenes is a two-step process, where E1A-dependent induction of proliferation is coupled to E1B-dependent suppression of programmed cell death (apoptosis). The E1B gene encodes two distinct transforming proteins, the 19K and 55K proteins, both of which independently cooperate with E1A. E1B 19K or 55K protein, or the human Bcl-2 protein, functions to suppress apoptosis and thereby permits transformation with E1A. The E1B 55K protein blocks p53 tumor suppressor protein function, indicating that p53 may mediate apoptosis by E1A. In the mutant conformation, p53 blocked induction of apoptosis by E1A and efficiently cooperated with E1A to transform primary cells. When p53 was returned to the wild-type conformation, E1A+p53 transformants underwent cell death by apoptosis. This induction of apoptosis by conformational shift of p53 from the mutant to the wild-type form was inhibited by expression of the E1B 19K protein. Thus, the p53 protein may function as a tumor suppressor by initiating a cell suicide response to deregulation of growth control by E1A. E1B 19K and 55K proteins provide separate mechanisms that disable the cell suicide pathway of p53.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002461 Cell Line, Transformed Eukaryotic cell line obtained in a quiescent or stationary phase which undergoes conversion to a state of unregulated growth in culture, resembling an in vitro tumor. It occurs spontaneously or through interaction with viruses, oncogenes, radiation, or drugs/chemicals. Transformed Cell Line,Cell Lines, Transformed,Transformed Cell Lines
D002471 Cell Transformation, Neoplastic Cell changes manifested by escape from control mechanisms, increased growth potential, alterations in the cell surface, karyotypic abnormalities, morphological and biochemical deviations from the norm, and other attributes conferring the ability to invade, metastasize, and kill. Neoplastic Transformation, Cell,Neoplastic Cell Transformation,Transformation, Neoplastic Cell,Tumorigenic Transformation,Cell Neoplastic Transformation,Cell Neoplastic Transformations,Cell Transformations, Neoplastic,Neoplastic Cell Transformations,Neoplastic Transformations, Cell,Transformation, Cell Neoplastic,Transformation, Tumorigenic,Transformations, Cell Neoplastic,Transformations, Neoplastic Cell,Transformations, Tumorigenic,Tumorigenic Transformations
D002472 Cell Transformation, Viral An inheritable change in cells manifested by changes in cell division and growth and alterations in cell surface properties. It is induced by infection with a transforming virus. Transformation, Viral Cell,Viral Cell Transformation,Cell Transformations, Viral,Transformations, Viral Cell,Viral Cell Transformations
D003587 Cytomegalovirus A genus of the family HERPESVIRIDAE, subfamily BETAHERPESVIRINAE, infecting the salivary glands, liver, spleen, lungs, eyes, and other organs, in which they produce characteristically enlarged cells with intranuclear inclusions. Infection with Cytomegalovirus is also seen as an opportunistic infection in AIDS. Herpesvirus 5, Human,Human Herpesvirus 5,Salivary Gland Viruses,HHV 5,Herpesvirus 5 (beta), Human,Cytomegaloviruses,Salivary Gland Virus,Virus, Salivary Gland,Viruses, Salivary Gland
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014162 Transfection The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES. Transfections

Related Publications

M Debbas, and E White
January 1995, Current topics in microbiology and immunology,
M Debbas, and E White
July 1996, International journal of cancer,
M Debbas, and E White
December 1998, Zhongguo yi xue ke xue yuan xue bao. Acta Academiae Medicinae Sinicae,
M Debbas, and E White
January 1999, Microbiology and immunology,
M Debbas, and E White
December 1996, Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research,
M Debbas, and E White
January 2000, Journal of gastrointestinal surgery : official journal of the Society for Surgery of the Alimentary Tract,
Copied contents to your clipboard!