Electrical resonance of isolated hair cells does not account for acoustic tuning in the free-standing region of the alligator lizard's cochlea. 1993

R A Eatock, and M Saeki, and M J Hutzler
Physiology Department, University of Rochester, New York 14642-8642.

The cochlea of the alligator lizard is divided into two morphologically and physiologically distinct regions. In the "tectorial region," hair bundles of hair cells are draped by a tectorial membrane, whereas in the "free-standing region," hair bundles are said to be free-standing because there are no overlying tectorial structures. The acoustic tuning of the free-standing region depends at least in part on mechanical resonances of the hair bundles. In the turtle cochlea, in contrast, acoustic tuning depends in large part upon the electrical properties of the hair cells. We have investigated the electrical properties of hair cells isolated from the free-standing region of the alligator lizard's cochlea. When injected with steps of depolarizing current, these "free-standing hair cells" exhibited electrical resonances that were comparable in frequency and quality to electrical resonances in cochlear hair cells from turtles, chicks, and alligators, and in saccular hair cells from frogs and fish. In the lizard's free-standing hair cells, however, the electrical resonance frequencies (< 300 Hz) were a decade below the cells' acoustic characteristic frequencies (between 1 and 4 kHz), showing that the electrical resonance is not likely to contribute to acoustic tuning. The electrical resonances were not apparent at rest. The cells' resting potentials were significantly more negative than the activation voltage (approximately -40 mV) of the Ca(2+)-dependent K+ current upon which the electrical resonance has been shown to depend in other hair cells. At potentials more negative than -50 mV, an inwardly rectifying K+ conductance dominated. Because we observed no electrical tuning above 300 Hz, our results indirectly support a mechanical origin for acoustic tuning in the free-standing region of the alligator lizard cochlea. These results further show that acoustic tuning cannot be inferred solely from the electrical resonances of isolated hair cells.

UI MeSH Term Description Entries
D008116 Lizards Reptiles within the order Squamata that generally possess limbs, moveable EYELIDS, and EXTERNAL EAR openings, although there are some species which lack one or more of these structures. Chameleons,Geckos,Chameleon,Gecko,Lizard
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002469 Cell Separation Techniques for separating distinct populations of cells. Cell Isolation,Cell Segregation,Isolation, Cell,Cell Isolations,Cell Segregations,Cell Separations,Isolations, Cell,Segregation, Cell,Segregations, Cell,Separation, Cell,Separations, Cell
D003051 Cochlea The part of the inner ear (LABYRINTH) that is concerned with hearing. It forms the anterior part of the labyrinth, as a snail-like structure that is situated almost horizontally anterior to the VESTIBULAR LABYRINTH. Cochleas
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D006198 Hair Cells, Auditory Sensory cells in the organ of Corti, characterized by their apical stereocilia (hair-like projections). The inner and outer hair cells, as defined by their proximity to the core of spongy bone (the modiolus), change morphologically along the COCHLEA. Towards the cochlear apex, the length of hair cell bodies and their apical STEREOCILIA increase, allowing differential responses to various frequencies of sound. Auditory Hair Cells,Cochlear Hair Cells,Auditory Hair Cell,Cell, Cochlear Hair,Cells, Cochlear Hair,Cochlear Hair Cell,Hair Cell, Auditory,Hair Cell, Cochlear,Hair Cells, Cochlear
D006309 Hearing The ability or act of sensing and transducing ACOUSTIC STIMULATION to the CENTRAL NERVOUS SYSTEM. It is also called audition. Audition
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

R A Eatock, and M Saeki, and M J Hutzler
July 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience,
R A Eatock, and M Saeki, and M J Hutzler
June 1986, The Journal of comparative neurology,
R A Eatock, and M Saeki, and M J Hutzler
December 1988, Journal of comparative physiology. A, Sensory, neural, and behavioral physiology,
R A Eatock, and M Saeki, and M J Hutzler
January 1989, Acta oto-laryngologica. Supplementum,
R A Eatock, and M Saeki, and M J Hutzler
December 1983, The Journal of physiology,
R A Eatock, and M Saeki, and M J Hutzler
January 1995, European archives of oto-rhino-laryngology : official journal of the European Federation of Oto-Rhino-Laryngological Societies (EUFOS) : affiliated with the German Society for Oto-Rhino-Laryngology - Head and Neck Surgery,
R A Eatock, and M Saeki, and M J Hutzler
October 1987, Biophysical journal,
R A Eatock, and M Saeki, and M J Hutzler
February 1983, The Journal of physiology,
Copied contents to your clipboard!