Nonheme iron-nitrosyl complex formation in rat hepatocytes: detection by electron paramagnetic resonance spectroscopy. 1993

J Stadler, and H A Bergonia, and M Di Silvio, and M A Sweetland, and T R Billiar, and R L Simmons, and J R Lancaster
Department of Surgery, University of Pittsburgh School of Medicine, Pennsylvania 15261.

Isolated rat hepatocytes were examined by EPR spectroscopy after exposure to inflammatory stimuli (interferon-gamma [IFN-gamma], tumor necrosis factor-alpha [TNF-alpha], interleukin-1 beta [IL-1 beta], and lipopolysaccharide [LPS]) in vitro, after in vivo immune activation by Corynebacterium parvum, and after exposure to .N = O and to nitroprusside (nitroferricyanide), an NO-donating nitrovasodilator. Hepatocytes exposed to IFN-gamma, TNF-alpha, IL-1 beta, and LPS demonstrated the appearance of a g = 2.04 axial EPR signal indicative of the formation of nonheme iron-nitrosyl complexes. Concurrent incubation with L-NG-monomethylarginine (L-NMMA), a competitive inhibitor of .N = O synthase, prevented the appearance of the signal. The g = 2.04 signal was localized in the cytosolic fraction of hepatocyte extracts. Hepatocytes freshly isolated from C. parvum-treated rats exhibited a modest g = 2.04 signal, which was increased by a factor of approximately 2.5-fold upon subsequent 24-h culture in media without additional stimuli. This increase was prevented by L-NMMA in the culture medium and also by the presence of rat erythrocytes added to the culture. In the presence of erythrocytes, virtually all of the .N = O produced was oxidized by reaction with intracellular hemoglobin within the erythrocyte, as judged by the relative amounts of nitrite and nitrate detected. These results suggest that in this model system .N = O is sufficiently stable and diffusible to escape from the hepatocyte and diffuse into the erythrocyte without first reacting with oxygen or with intracellular iron at the site of its formation within the hepatocyte. Treatment of hepatocytes with exogenous .N = O or nitroprusside generated an identical g = 2.04 signal of much greater intensity than with cytokines plus LPS. Treatment with nitroprusside also caused the appearance of a signal from pentacyanonitrosylferrate ion, verifying the previously reported metabolism of this nitrovasodilator by reduction and liberation of cyanide ion and .N = O. These results indicate significant differences in intracellular nonheme iron nitrosylation in hepatocytes compared to cytotoxic activated macrophages, which may correlate with the differences in physiological function of .N = O in these two systems.

UI MeSH Term Description Entries
D007371 Interferon-gamma The major interferon produced by mitogenically or antigenically stimulated LYMPHOCYTES. It is structurally different from TYPE I INTERFERON and its major activity is immunoregulation. It has been implicated in the expression of CLASS II HISTOCOMPATIBILITY ANTIGENS in cells that do not normally produce them, leading to AUTOIMMUNE DISEASES. Interferon Type II,Interferon, Immune,gamma-Interferon,Interferon, gamma,Type II Interferon,Immune Interferon,Interferon, Type II
D007375 Interleukin-1 A soluble factor produced by MONOCYTES; MACROPHAGES, and other cells which activates T-lymphocytes and potentiates their response to mitogens or antigens. Interleukin-1 is a general term refers to either of the two distinct proteins, INTERLEUKIN-1ALPHA and INTERLEUKIN-1BETA. The biological effects of IL-1 include the ability to replace macrophage requirements for T-cell activation. IL-1,Lymphocyte-Activating Factor,Epidermal Cell Derived Thymocyte-Activating Factor,Interleukin I,Macrophage Cell Factor,T Helper Factor,Epidermal Cell Derived Thymocyte Activating Factor,Interleukin 1,Lymphocyte Activating Factor
D007501 Iron A metallic element with atomic symbol Fe, atomic number 26, and atomic weight 55.85. It is an essential constituent of HEMOGLOBINS; CYTOCHROMES; and IRON-BINDING PROTEINS. It plays a role in cellular redox reactions and in the transport of OXYGEN. Iron-56,Iron 56
D008070 Lipopolysaccharides Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed) Lipopolysaccharide,Lipoglycans
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D009569 Nitric Oxide A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP. Endogenous Nitrate Vasodilator,Mononitrogen Monoxide,Nitric Oxide, Endothelium-Derived,Nitrogen Monoxide,Endothelium-Derived Nitric Oxide,Monoxide, Mononitrogen,Monoxide, Nitrogen,Nitrate Vasodilator, Endogenous,Nitric Oxide, Endothelium Derived,Oxide, Nitric,Vasodilator, Endogenous Nitrate
D009599 Nitroprusside A powerful vasodilator used in emergencies to lower blood pressure or to improve cardiac function. It is also an indicator for free sulfhydryl groups in proteins. Nitroferricyanide,Sodium Nitroprusside,Cyanonitrosylferrate,Ketostix,Naniprus,Nipride,Nipruton,Nitriate,Nitropress,Nitroprussiat Fides,Nitroprusside, Disodium Salt,Nitroprusside, Disodium Salt, Dihydrate,Disodium Salt Nitroprusside,Nitroprusside, Sodium
D011425 Propionibacterium acnes A bacteria isolated from normal skin, intestinal contents, wounds, blood, pus, and soft tissue abscesses. It is a common contaminant of clinical specimens, presumably from the skin of patients or attendants. Corynebacterium acnes,Corynebacterium parvum
D004578 Electron Spin Resonance Spectroscopy A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING. ENDOR,Electron Nuclear Double Resonance,Electron Paramagnetic Resonance,Paramagnetic Resonance,Electron Spin Resonance,Paramagnetic Resonance, Electron,Resonance, Electron Paramagnetic,Resonance, Electron Spin,Resonance, Paramagnetic

Related Publications

J Stadler, and H A Bergonia, and M Di Silvio, and M A Sweetland, and T R Billiar, and R L Simmons, and J R Lancaster
January 1995, Life sciences,
J Stadler, and H A Bergonia, and M Di Silvio, and M A Sweetland, and T R Billiar, and R L Simmons, and J R Lancaster
January 1968, Biofizika,
J Stadler, and H A Bergonia, and M Di Silvio, and M A Sweetland, and T R Billiar, and R L Simmons, and J R Lancaster
May 2009, Inorganic chemistry,
J Stadler, and H A Bergonia, and M Di Silvio, and M A Sweetland, and T R Billiar, and R L Simmons, and J R Lancaster
August 1982, The Journal of biological chemistry,
J Stadler, and H A Bergonia, and M Di Silvio, and M A Sweetland, and T R Billiar, and R L Simmons, and J R Lancaster
June 1985, Biochemical Society transactions,
J Stadler, and H A Bergonia, and M Di Silvio, and M A Sweetland, and T R Billiar, and R L Simmons, and J R Lancaster
January 2002, Methods in enzymology,
J Stadler, and H A Bergonia, and M Di Silvio, and M A Sweetland, and T R Billiar, and R L Simmons, and J R Lancaster
July 2010, Free radical biology & medicine,
J Stadler, and H A Bergonia, and M Di Silvio, and M A Sweetland, and T R Billiar, and R L Simmons, and J R Lancaster
November 1970, The Journal of biological chemistry,
J Stadler, and H A Bergonia, and M Di Silvio, and M A Sweetland, and T R Billiar, and R L Simmons, and J R Lancaster
January 2016, Methods in molecular biology (Clifton, N.J.),
J Stadler, and H A Bergonia, and M Di Silvio, and M A Sweetland, and T R Billiar, and R L Simmons, and J R Lancaster
September 1999, Free radical biology & medicine,
Copied contents to your clipboard!