Differential localization of phosphoinositide-linked metabotropic glutamate receptor (mGluR1) and the inositol 1,4,5-trisphosphate receptor in rat brain. 1993

M Fotuhi, and A H Sharp, and C E Glatt, and P M Hwang, and M von Krosigk, and S H Snyder, and T M Dawson
Department of Neuroscience, Neurology Pharmacology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.

The type 1 metabotropic glutamate receptor (mGluR1) is through to act via the phosphoinositide (PI) system with the associated formation of inositol 1,4,5-trisphosphate (IP3) and Ca2+ release. Utilizing immunohistochemistry and in situ hybridization, we have localized protein and mRNA, respectively, for the mGluR1 and the IP3 receptor (IP3R). We have also localized glutamate-linked PI turnover by autoradiography with 3H-cytidine. We observe a striking contrast in localizations of mGluR1 and IP3R both for protein and mRNA. For instance, mGluR1 occurs in the apparent absence of IP3R in neurons of the stratum oriens of the CA1 hippocampus, islands of Calleja, anterodorsal nucleus of thalamus, lateral nucleus of hypothalamus, and the granular cell layer and the deep nuclei of cerebellum. mGluR1 actions in these brain regions may primarily be mediated through the protein kinase C limb of the PI system, as they contain moderate amounts of 3H-phorbol ester binding. The subthalamic nucleus, red nucleus, and Darkshevich's nucleus, which possess high levels of mGluR1, are devoid of both IP3R immunoreactivity and 3H-phorbol ester binding. These reciprocal localizations suggest that mGluR1 actions in many brain areas may not primarily involve IP3, reflecting instead influences on protein kinase C or other second messengers.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008297 Male Males
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D010716 Phosphatidylinositols Derivatives of phosphatidic acids in which the phosphoric acid is bound in ester linkage to the hexahydroxy alcohol, myo-inositol. Complete hydrolysis yields 1 mole of glycerol, phosphoric acid, myo-inositol, and 2 moles of fatty acids. Inositide Phospholipid,Inositol Phosphoglyceride,Inositol Phosphoglycerides,Inositol Phospholipid,Phosphoinositide,Phosphoinositides,PtdIns,Inositide Phospholipids,Inositol Phospholipids,Phosphatidyl Inositol,Phosphatidylinositol,Inositol, Phosphatidyl,Phosphoglyceride, Inositol,Phosphoglycerides, Inositol,Phospholipid, Inositide,Phospholipid, Inositol,Phospholipids, Inositide,Phospholipids, Inositol
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D003515 Cycloleucine An amino acid formed by cyclization of leucine. It has cytostatic, immunosuppressive and antineoplastic activities. 1-Aminocyclopentanecarboxylic Acid,Aminocyclopentanecarboxylic Acid,NSC 1026,1 Aminocyclopentanecarboxylic Acid,Acid, 1-Aminocyclopentanecarboxylic,Acid, Aminocyclopentanecarboxylic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

M Fotuhi, and A H Sharp, and C E Glatt, and P M Hwang, and M von Krosigk, and S H Snyder, and T M Dawson
January 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience,
M Fotuhi, and A H Sharp, and C E Glatt, and P M Hwang, and M von Krosigk, and S H Snyder, and T M Dawson
April 2007, The Journal of neuroscience : the official journal of the Society for Neuroscience,
M Fotuhi, and A H Sharp, and C E Glatt, and P M Hwang, and M von Krosigk, and S H Snyder, and T M Dawson
November 1994, Neuroreport,
M Fotuhi, and A H Sharp, and C E Glatt, and P M Hwang, and M von Krosigk, and S H Snyder, and T M Dawson
March 1998, Neuroscience letters,
M Fotuhi, and A H Sharp, and C E Glatt, and P M Hwang, and M von Krosigk, and S H Snyder, and T M Dawson
July 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience,
M Fotuhi, and A H Sharp, and C E Glatt, and P M Hwang, and M von Krosigk, and S H Snyder, and T M Dawson
November 1993, The Journal of comparative neurology,
M Fotuhi, and A H Sharp, and C E Glatt, and P M Hwang, and M von Krosigk, and S H Snyder, and T M Dawson
November 1994, The Journal of comparative neurology,
M Fotuhi, and A H Sharp, and C E Glatt, and P M Hwang, and M von Krosigk, and S H Snyder, and T M Dawson
March 1993, Trends in pharmacological sciences,
M Fotuhi, and A H Sharp, and C E Glatt, and P M Hwang, and M von Krosigk, and S H Snyder, and T M Dawson
February 1998, Kidney international,
M Fotuhi, and A H Sharp, and C E Glatt, and P M Hwang, and M von Krosigk, and S H Snyder, and T M Dawson
August 1997, Mechanisms of development,
Copied contents to your clipboard!