Hormonal control of transcription in the rat uterus. Stimulation of deoxyribonucleic acid-dependent RNA polymerase III by estradiol. 1977

P A Weil, and J Sidikaro, and G M Stancel, and S P Blatti

DNA-dependent RNA polymerases were extracted from rat uterine tissue, partially purified and resolved by DEAE-Sephadex chromatography. RNA polymerases I, II, IIIA, and IIIB eluted at the characteristic ammonium sulfate concentrations of 0.15, 0.28, 0.34, and 0.42 M, respectively. The sensitivity of each peak of polymerase to alpha-amanitin was examined and was shown to be essentially identical to the three classes of RNA polymerases in other mammalian systems. RNA polymerase I was insensitive to high levels of alpha-amanitin, RNA polymerase II was sensitive to low concentrations of alpha-amanitin (50% inhibition at 0.006 mug/ml) and RNA polymerases IIIA and IIIB were sensitive to high concentrations of alpha-amanitin (50% inhibition at 18 mug/ml). The alpha-amanitin sensitivity curve of total RNA synthesis measured in isolated nucleo demonstrated that the activity of each class of RNA polymerase could be quantitated in uterine nuclei. Thus the initial decrease in activity at low concentrations of alpha-amanitin (50% inhibition at 0.005 mug/ml) was attributed to the inhibition of RNA polymerase II activity, the second decrease in activity at higher concentrations of alpha-amanitin (50% inhibition at 15 mug/ml) was attributed to the inhibition of RNA polymerase III activity, and the activity which was resistant to the highest alpha-amanitin concentration tested was attributed to RNA polymerase I activity. When estradiol was given to immature rats 6 h before killing both RNA polymerases I and III levels in nuclei were increased significantly over the control values. The time course of these changes demonstrated that the increases in RNA polymerases I and III were first evident between 1.5 and 3 h following hormone treatment. Significantly, these increases in polymerase I and III in nuclei parallel the published increases for rRNA and tRNA synthesis following hormone treatment. However, the amount of RNA polymerase I and III was not altered upon extraction, suggesting that these changes are due to the alteration in chromatin template activity. Both estradiol and estriol produced identical increases in uterine RNA polymerase I and III 6 h after treatment.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009929 Organ Size The measurement of an organ in volume, mass, or heaviness. Organ Volume,Organ Weight,Size, Organ,Weight, Organ
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D004958 Estradiol The 17-beta-isomer of estradiol, an aromatized C18 steroid with hydroxyl group at 3-beta- and 17-beta-position. Estradiol-17-beta is the most potent form of mammalian estrogenic steroids. 17 beta-Estradiol,Estradiol-17 beta,Oestradiol,17 beta-Oestradiol,Aerodiol,Delestrogen,Estrace,Estraderm TTS,Estradiol Anhydrous,Estradiol Hemihydrate,Estradiol Hemihydrate, (17 alpha)-Isomer,Estradiol Monohydrate,Estradiol Valerate,Estradiol Valeriante,Estradiol, (+-)-Isomer,Estradiol, (-)-Isomer,Estradiol, (16 alpha,17 alpha)-Isomer,Estradiol, (16 alpha,17 beta)-Isomer,Estradiol, (17-alpha)-Isomer,Estradiol, (8 alpha,17 beta)-(+-)-Isomer,Estradiol, (8 alpha,17 beta)-Isomer,Estradiol, (9 beta,17 alpha)-Isomer,Estradiol, (9 beta,17 beta)-Isomer,Estradiol, Monosodium Salt,Estradiol, Sodium Salt,Estradiol-17 alpha,Estradiol-17beta,Ovocyclin,Progynon-Depot,Progynova,Vivelle,17 beta Estradiol,17 beta Oestradiol,Estradiol 17 alpha,Estradiol 17 beta,Estradiol 17beta,Progynon Depot
D004964 Estriol A hydroxylated metabolite of ESTRADIOL or ESTRONE that has a hydroxyl group at C3, 16-alpha, and 17-beta position. Estriol is a major urinary estrogen. During PREGNANCY, a large amount of estriol is produced by the PLACENTA. Isomers with inversion of the hydroxyl group or groups are called epiestriol. (16alpha,17beta)-Estra-1,3,5(10)-Triene-3,16,17-Triol,(16beta,17beta)-Estra-1,3,5(10)-Triene-3,16,17-Triol,16-alpha-Hydroxy-Estradiol,16alpha,17beta-Estriol,16beta-Hydroxy-Estradiol,Epiestriol,Estra-1,3,5(10)-Triene-3,16beta,17beta-Triol,Ovestin,16 alpha Hydroxy Estradiol,16alpha,17beta Estriol,16beta Hydroxy Estradiol
D005260 Female Females
D000546 Amanitins Cyclic peptides extracted from carpophores of various mushroom species. They are potent inhibitors of RNA polymerases in most eukaryotic species, blocking the production of mRNA and protein synthesis. These peptides are important in the study of transcription. Alpha-amanitin is the main toxin from the species Amanitia phalloides, poisonous if ingested by humans or animals. Amanitin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

P A Weil, and J Sidikaro, and G M Stancel, and S P Blatti
August 1978, FEBS letters,
P A Weil, and J Sidikaro, and G M Stancel, and S P Blatti
December 2004, Biochemical Society transactions,
P A Weil, and J Sidikaro, and G M Stancel, and S P Blatti
August 1970, Comptes rendus hebdomadaires des seances de l'Academie des sciences. Serie D: Sciences naturelles,
P A Weil, and J Sidikaro, and G M Stancel, and S P Blatti
June 1981, Biochemistry,
P A Weil, and J Sidikaro, and G M Stancel, and S P Blatti
April 1975, Biochemistry,
P A Weil, and J Sidikaro, and G M Stancel, and S P Blatti
May 2009, DNA repair,
P A Weil, and J Sidikaro, and G M Stancel, and S P Blatti
January 1988, Annual review of biochemistry,
P A Weil, and J Sidikaro, and G M Stancel, and S P Blatti
January 1983, Current topics in developmental biology,
P A Weil, and J Sidikaro, and G M Stancel, and S P Blatti
February 1994, The Journal of biological chemistry,
Copied contents to your clipboard!