Gap junctions. Structural changes after uncoupling procedures. 1977

C Peracchia

The freeze-fracture appearance of rat stomach and liver gap junctions changes after uncoupling procedures such as inhibition of the metabolism of perfusion with hypertonic sucrose. In control stomach, either fixed immediately or kept for 1 h in a well-oxygenated Tyrode's solution at 37 degrees C, most gap junctions between mucous cells contain particles irregularly packed at an average center-to-center spacing of 10.3-10.5 nm. After 1-h treatment with 2,4-dinitrophenol (DNP), at the same temperature and oxygenation, most particles aggregate hexagonally at an average spacing of approximately 8.5 nm. Similar changes are seen in hypoxic specimens. In control liver, fixed by perfusion, most junctional particles are irregularly packed at an average center-to-center spacing of approximately 10 mm. Small areas of fairly regular hexagonal packing are occasionally seen, where the average particle spacing is 9.2-9.5 nm. In hypoxic liver, the junctional particles form regular hexagonal packings in which the average center-to-center particle spacing is approximately 8.5 nm. In liver perfused with hypertonic sucrose-calcium solutions, following EDTA solutions, most junctions are pulled apart. The separated junctional membranes, expected to be highly impermeable, contain particles regularly and tightly packed as in hypoxic or DNP-treated junctions. Preliminary measurements indicate also a possible change in particle diameter, from approximately 8.6 nm (control) to approximately 7.7 nm (treated). The structural changes are similar to those previously reported in crayfish and may reflect conformational changes in particle subunits resulting in functional uncoupling.

UI MeSH Term Description Entries
D007365 Intercellular Junctions Direct contact of a cell with a neighboring cell. Most such junctions are too small to be resolved by light microscopy, but they can be visualized by conventional or freeze-fracture electron microscopy, both of which show that the interacting CELL MEMBRANE and often the underlying CYTOPLASM and the intervening EXTRACELLULAR SPACE are highly specialized in these regions. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p792) Cell Junctions,Cell Junction,Intercellular Junction,Junction, Cell,Junction, Intercellular,Junctions, Cell,Junctions, Intercellular
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D004140 Dinitrophenols Organic compounds that contain two nitro groups attached to a phenol.
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000860 Hypoxia Sub-optimal OXYGEN levels in the ambient air of living organisms. Anoxia,Oxygen Deficiency,Anoxemia,Deficiency, Oxygen,Hypoxemia,Deficiencies, Oxygen,Oxygen Deficiencies
D013270 Stomach An organ of digestion situated in the left upper quadrant of the abdomen between the termination of the ESOPHAGUS and the beginning of the DUODENUM. Stomachs
D013395 Sucrose A nonreducing disaccharide composed of GLUCOSE and FRUCTOSE linked via their anomeric carbons. It is obtained commercially from SUGARCANE, sugar beet (BETA VULGARIS), and other plants and used extensively as a food and a sweetener. Saccharose
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
Copied contents to your clipboard!