H+ countertransport and electrogenicity of the sarcoplasmic reticulum Ca2+ pump in reconstituted proteoliposomes. 1993

X Yu, and S Carroll, and J L Rigaud, and G Inesi
Department of Biological Chemistry, School of Medicine, University of Maryland, Baltimore 21201.

The Ca2+ transport adenosine triphosphatase of sarcoplasmic reticulum was reconstituted in unilamellar liposomes prepared by reverse-phase evaporation. The size of the resulting proteoliposomes was similar to that of native sarcoplasmic reticulum vesicles, but their protein content was much lower, with a protein/lipid ratio (wt/wt) of 1:40-160, as compared with 1:1 in the native membrane. The proteoliposomes sustained adenosine triphosphate-dependent Ca2+ uptake at rates proportional to the protein content (1-2 mumol Ca2+/mg protein/min), reaching asymptotic levels corresponding to a lumenal calcium concentration of 10-20 mM. The low permeability of the proteoliposomes permitted direct demonstration of Ca2+/H+ countertransport and electrogenicity by parallel measurements in the same experimental system. Countertransport of one H+ per one Ca2+ was demonstrated, and inhibition of the Ca2+ pump by lumenal alkalinization was relieved by the H+ ionophore carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone. Consistent with the countertransport stoichiometry, net positive charge displacement was produced by Ca2+ transport, as revealed by a rapid oxonol VI absorption rise. The initial rise and the following steady-state level of oxonol absorption were highest when SO4(2-) was the prevalent anion and lowest in the presence of the lipophilic anion SCN-. The influence of anions was attributed to potential driven counterion compensation. The absorption rise was rapidly collapsed by addition of valinomycin in the presence of K+. Experimentation with Ca2+ and H+ ionophores was consistent with a primary role of Ca2+ and H+ in net charge displacement. The estimated value of the steady-state electrical potential observed under optimal conditions was approximately 50 mV and was accounted for by the estimated charge transfer associated with Ca2+ and H+ countertransport under the same conditions.

UI MeSH Term Description Entries
D007555 Isoxazoles Azoles with an OXYGEN and a NITROGEN next to each other at the 1,2 positions, in contrast to OXAZOLES that have nitrogens at the 1,3 positions. Isoxazole
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D011510 Proteolipids Protein-lipid combinations abundant in brain tissue, but also present in a wide variety of animal and plant tissues. In contrast to lipoproteins, they are insoluble in water, but soluble in a chloroform-methanol mixture. The protein moiety has a high content of hydrophobic amino acids. The associated lipids consist of a mixture of GLYCEROPHOSPHATES; CEREBROSIDES; and SULFOGLYCOSPHINGOLIPIDS; while lipoproteins contain PHOSPHOLIPIDS; CHOLESTEROL; and TRIGLYCERIDES.
D011522 Protons Stable elementary particles having the smallest known positive charge, found in the nuclei of all elements. The proton mass is less than that of a neutron. A proton is the nucleus of the light hydrogen atom, i.e., the hydrogen ion. Hydrogen Ions,Hydrogen Ion,Ion, Hydrogen,Ions, Hydrogen,Proton
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004396 Coloring Agents Chemicals and substances that impart color including soluble dyes and insoluble pigments. They are used in INKS; PAINTS; and as INDICATORS AND REAGENTS. Coloring Agent,Dye,Dyes,Organic Pigment,Stain,Stains,Tissue Stain,Tissue Stains,Organic Pigments,Pigments, Inorganic,Agent, Coloring,Inorganic Pigments,Pigment, Organic,Pigments, Organic,Stain, Tissue,Stains, Tissue
D004563 Electrochemistry The study of chemical changes resulting from electrical action and electrical activity resulting from chemical changes. Electrochemistries
D000252 Calcium-Transporting ATPases Cation-transporting proteins that utilize the energy of ATP hydrolysis for the transport of CALCIUM. They differ from CALCIUM CHANNELS which allow calcium to pass through a membrane without the use of energy. ATPase, Calcium,Adenosinetriphosphatase, Calcium,Ca(2+)-Transporting ATPase,Calcium ATPase,Calcium Adenosinetriphosphatase,Adenosine Triphosphatase, Calcium,Ca2+ ATPase,Calcium-ATPase,ATPase, Ca2+,ATPases, Calcium-Transporting,Calcium Adenosine Triphosphatase,Calcium Transporting ATPases,Triphosphatase, Calcium Adenosine
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2

Related Publications

X Yu, and S Carroll, and J L Rigaud, and G Inesi
May 1994, The Journal of biological chemistry,
X Yu, and S Carroll, and J L Rigaud, and G Inesi
January 1983, Annual review of physiology,
X Yu, and S Carroll, and J L Rigaud, and G Inesi
December 1981, FEBS letters,
X Yu, and S Carroll, and J L Rigaud, and G Inesi
May 1982, Biochimica et biophysica acta,
X Yu, and S Carroll, and J L Rigaud, and G Inesi
July 1978, The Journal of biological chemistry,
X Yu, and S Carroll, and J L Rigaud, and G Inesi
January 1990, Membrane biochemistry,
Copied contents to your clipboard!