Promoter elements determining weak expression of the GAL4 regulatory gene of Saccharomyces cerevisiae. 1993

D W Griggs, and M Johnston
Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110.

The GAL4 gene of Saccharomyces cerevisiae (encoding the activator of transcription of the GAL genes) is poorly expressed and is repressed during growth on glucose. To determine the basis for its weak expression and to identify DNA sequences recognized by proteins that activate transcription of a gene that itself encodes an activator of transcription, we have analyzed GAL4 promoter structure. We show that the GAL4 promoter is about 90-fold weaker than the strong GAL1 promoter and at least 7-fold weaker than the feeble URA3 promoter and that this low level of GAL4 expression is primarily due to a weak promoter. By deletion mapping, the GAL4 promoter can be divided into three functional regions. Two of these regions contain positive elements; a distal region termed the UASGAL4 (upstream activation sequence) contains redundant elements that increase promoter function, and a central region termed the UESGAL4 (upstream essential sequence) is essential for even basal levels of GAL4 expression. The third element, an upstream repression sequence, mediates glucose repression of GAL4 expression and is located between the UES and the transcriptional start site. The UASGAL4 is unusual because it is not interchangable with UAS elements in other yeast promoters; it does not function as a UAS element when inserted in a CYC1 promoter, and a normally strong UAS functions poorly in place of UASGAL4 in the GAL4 promoter. Similarly, the UES element of GAL4 does not function as a TATA element in a test promoter, and consensus TATA elements do not function in place of UES elements in the GAL4 promoter. These results suggest that GAL4 contains a weak TATA-less promoter and that the proteins regulating expression of this regulatory gene may be novel and context specific.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009841 Oligonucleotides Polymers made up of a few (2-20) nucleotides. In molecular genetics, they refer to a short sequence synthesized to match a region where a mutation is known to occur, and then used as a probe (OLIGONUCLEOTIDE PROBES). (Dorland, 28th ed) Oligonucleotide
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D003574 Cytochrome c Group A group of cytochromes with covalent thioether linkages between either or both of the vinyl side chains of protoheme and the protein. (Enzyme Nomenclature, 1992, p539) Cytochromes Type c,Group, Cytochrome c,Type c, Cytochromes
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D005656 Fungal Proteins Proteins found in any species of fungus. Fungal Gene Products,Fungal Gene Proteins,Fungal Peptides,Gene Products, Fungal,Yeast Proteins,Gene Proteins, Fungal,Peptides, Fungal,Proteins, Fungal
D005800 Genes, Fungal The functional hereditary units of FUNGI. Fungal Genes,Fungal Gene,Gene, Fungal
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

D W Griggs, and M Johnston
January 2002, In silico biology,
D W Griggs, and M Johnston
February 1984, Molecular and cellular biology,
D W Griggs, and M Johnston
July 1990, Nucleic acids research,
D W Griggs, and M Johnston
February 1994, Yeast (Chichester, England),
D W Griggs, and M Johnston
January 2020, Synthetic biology (Oxford, England),
Copied contents to your clipboard!