Positive and negative regulatory elements control expression of the yeast retrotransposon Ty3. 1993

V W Bilanchone, and J A Claypool, and P T Kinsey, and S B Sandmeyer
Department of Microbiology and Molecular Genetics, University of California, Irvine 92717.

We report the results of an analysis of Ty3 transcription and identification of Ty3 regions that mediate pheromone and mating-type regulation to coordinate its expression with the yeast life cycle. A set of strains was constructed which was isogenic except for the number of Ty3 elements, which varied from zero to three. Analysis of Ty3 expression in these strains showed that each of the three elements was transcribed and that each element was regulated. Dissection of the long terminal repeat regulatory region by Northern blot analysis of deletion mutants and reporter gene analysis showed that the upstream junction of Ty3 with flanking chromosomal sequences contained a negative control region. A 19-bp fragment (positions 56-74) containing one consensus copy and one 7 of 8-bp match to the pheromone response element (PRE) consensus was sufficient to mediate pheromone induction in either haploid cell type. Deletion of this region, however, did not abolish expression, indicating that other sequences also activate transcription. A 24-bp block immediately downstream of the PRE region contained a sequence similar to the a1-alpha 2 consensus that conferred mating-type control. A single base pair mutation in the region separating the PRE and a1-alpha 2 sequences blocked pheromone induction, but not mating-type control. Thus, the long terminal repeat of Ty3 is a compact, highly regulated, mobile promoter which is responsive to cell type and mating.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D010675 Pheromones Chemical substances, excreted by an organism into the environment, that elicit behavioral or physiological responses from other organisms of the same species. Perception of these chemical signals may be olfactory or by contact. Allelochemical,Allelochemicals,Allomone,Allomones,Ectohormones,Kairomone,Kairomones,Pheromone,Semiochemical,Semiochemicals,Synomones
D012045 Regulatory Sequences, Nucleic Acid Nucleic acid sequences involved in regulating the expression of genes. Nucleic Acid Regulatory Sequences,Regulatory Regions, Nucleic Acid (Genetics),Region, Regulatory,Regions, Regulatory,Regulator Regions, Nucleic Acid,Regulatory Region,Regulatory Regions
D012091 Repetitive Sequences, Nucleic Acid Sequences of DNA or RNA that occur in multiple copies. There are several types: INTERSPERSED REPETITIVE SEQUENCES are copies of transposable elements (DNA TRANSPOSABLE ELEMENTS or RETROELEMENTS) dispersed throughout the genome. TERMINAL REPEAT SEQUENCES flank both ends of another sequence, for example, the long terminal repeats (LTRs) on RETROVIRUSES. Variations may be direct repeats, those occurring in the same direction, or inverted repeats, those opposite to each other in direction. TANDEM REPEAT SEQUENCES are copies which lie adjacent to each other, direct or inverted (INVERTED REPEAT SEQUENCES). DNA Repetitious Region,Direct Repeat,Genes, Selfish,Nucleic Acid Repetitive Sequences,Repetitive Region,Selfish DNA,Selfish Genes,DNA, Selfish,Repetitious Region, DNA,Repetitive Sequence,DNA Repetitious Regions,DNAs, Selfish,Direct Repeats,Gene, Selfish,Repeat, Direct,Repeats, Direct,Repetitious Regions, DNA,Repetitive Regions,Repetitive Sequences,Selfish DNAs,Selfish Gene
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D004251 DNA Transposable Elements Discrete segments of DNA which can excise and reintegrate to another site in the genome. Most are inactive, i.e., have not been found to exist outside the integrated state. DNA transposable elements include bacterial IS (insertion sequence) elements, Tn elements, the maize controlling elements Ac and Ds, Drosophila P, gypsy, and pogo elements, the human Tigger elements and the Tc and mariner elements which are found throughout the animal kingdom. DNA Insertion Elements,DNA Transposons,IS Elements,Insertion Sequence Elements,Tn Elements,Transposable Elements,Elements, Insertion Sequence,Sequence Elements, Insertion,DNA Insertion Element,DNA Transposable Element,DNA Transposon,Element, DNA Insertion,Element, DNA Transposable,Element, IS,Element, Insertion Sequence,Element, Tn,Element, Transposable,Elements, DNA Insertion,Elements, DNA Transposable,Elements, IS,Elements, Tn,Elements, Transposable,IS Element,Insertion Element, DNA,Insertion Elements, DNA,Insertion Sequence Element,Sequence Element, Insertion,Tn Element,Transposable Element,Transposable Element, DNA,Transposable Elements, DNA,Transposon, DNA,Transposons, DNA
D004271 DNA, Fungal Deoxyribonucleic acid that makes up the genetic material of fungi. Fungal DNA
D000072235 Mating Factor A protein also known as pheromone mating factor that occurs on the surfaces of organisms such as yeast and fungi. Mating Hormone,Pheromone a-Factor,Pheromone alpha-Factor,Sexual Agglutination Factor,alpha-Agglutinin (Fungal),alpha-Factor (Fungal),alpha-Mating Factor,Agglutination Factor, Sexual,Factor, Mating,Factor, Sexual Agglutination,Factor, alpha-Mating,Hormone, Mating,Pheromone a Factor,Pheromone alpha Factor,a-Factor, Pheromone,alpha Mating Factor,alpha-Factor, Pheromone
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

V W Bilanchone, and J A Claypool, and P T Kinsey, and S B Sandmeyer
January 1999, Biochemical and biophysical research communications,
V W Bilanchone, and J A Claypool, and P T Kinsey, and S B Sandmeyer
April 2015, Microbiology spectrum,
V W Bilanchone, and J A Claypool, and P T Kinsey, and S B Sandmeyer
November 1990, Molecular and cellular biology,
V W Bilanchone, and J A Claypool, and P T Kinsey, and S B Sandmeyer
August 1988, Biochemistry,
V W Bilanchone, and J A Claypool, and P T Kinsey, and S B Sandmeyer
April 1984, Cell,
V W Bilanchone, and J A Claypool, and P T Kinsey, and S B Sandmeyer
February 1999, FEBS letters,
V W Bilanchone, and J A Claypool, and P T Kinsey, and S B Sandmeyer
January 1999, Methods in molecular biology (Clifton, N.J.),
V W Bilanchone, and J A Claypool, and P T Kinsey, and S B Sandmeyer
January 1988, The Journal of biological chemistry,
V W Bilanchone, and J A Claypool, and P T Kinsey, and S B Sandmeyer
January 2015, PLoS genetics,
V W Bilanchone, and J A Claypool, and P T Kinsey, and S B Sandmeyer
December 1999, The Journal of biological chemistry,
Copied contents to your clipboard!