Retinoic acid receptor gamma 2 gene expression is up-regulated by retinoic acid in 3T3-L1 preadipocytes. 1993

Y Kamei, and T Kawada, and R Kazuki, and E Sugimoto
Laboratory of Nutritional Chemistry, Department of Food Science and Technology, Faculty of Agriculture, Kyoto University, Japan.

Retinoids, especially all-trans retinoic acid (RA), have been shown to inhibit the differentiation of preadipose cells. In the present study, the expression of retinoic acid receptors (RAR alpha, beta and gamma) and retinoid X receptors (RXR alpha, beta and gamma) was examined by Northern blot analysis in rat adipose tissue and mouse 3T3-L1 adipose cells. The adipose tissue and/or 3T3-L1 cells expressed mRNAs for a number of nuclear retinoid receptors, including RAR alpha, beta and gamma, and RXR alpha, beta and gamma. RAR alpha, RAR gamma, RXR alpha and RXR beta mRNAs were abundant in adipose tissue and 3T3-L1 cells. RXR gamma mRNA was detected in adipose tissue but not in 3T3-L1 cells. Treatment of 3T3-L1 cells with 1 microM RA led to a 4-5-fold increase in the RAR gamma mRNA level, but only a trace amount of RAR beta mRNA was detected. RAR gamma mRNA expression was rapidly (within 2 h) induced by physiological concentrations of RA in a dose-dependent manner. The response of RAR gamma mRNA expression to RA was reversible; rapid disappearance of RAR gamma mRNA occurred on RA removal. In addition, the induction of RAR gamma expression did not require de novo protein synthesis, but was completely abolished by an inhibitor of RNA synthesis. Using RAR gamma 1 and gamma 2 isoform-specific probes, the patterns of RAR gamma 1 and gamma 2 mRNA expression in 3T3-L1 cells in the presence and absence of RA were examined. RAR gamma 1 mRNA was detected in 3T3-L1 cells but was not affected by RA treatment; however, RAR gamma 2 mRNA was strongly induced by RA.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009838 Oligodeoxyribonucleotides A group of deoxyribonucleotides (up to 12) in which the phosphate residues of each deoxyribonucleotide act as bridges in forming diester linkages between the deoxyribose moieties. Oligodeoxynucleotide,Oligodeoxyribonucleotide,Oligodeoxynucleotides
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D000273 Adipose Tissue Specialized connective tissue composed of fat cells (ADIPOCYTES). It is the site of stored FATS, usually in the form of TRIGLYCERIDES. In mammals, there are two types of adipose tissue, the WHITE FAT and the BROWN FAT. Their relative distributions vary in different species with most adipose tissue being white. Fatty Tissue,Body Fat,Fat Pad,Fat Pads,Pad, Fat,Pads, Fat,Tissue, Adipose,Tissue, Fatty
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D014157 Transcription Factors Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process. Transcription Factor,Factor, Transcription,Factors, Transcription

Related Publications

Y Kamei, and T Kawada, and R Kazuki, and E Sugimoto
September 1990, Nutrition reviews,
Y Kamei, and T Kawada, and R Kazuki, and E Sugimoto
May 1999, Differentiation; research in biological diversity,
Y Kamei, and T Kawada, and R Kazuki, and E Sugimoto
July 2022, International journal of molecular sciences,
Y Kamei, and T Kawada, and R Kazuki, and E Sugimoto
January 1991, The Journal of biological chemistry,
Y Kamei, and T Kawada, and R Kazuki, and E Sugimoto
August 2002, Biochemical and biophysical research communications,
Y Kamei, and T Kawada, and R Kazuki, and E Sugimoto
May 2013, Biochemical and biophysical research communications,
Y Kamei, and T Kawada, and R Kazuki, and E Sugimoto
June 2008, FEBS letters,
Y Kamei, and T Kawada, and R Kazuki, and E Sugimoto
August 2005, Experimental cell research,
Y Kamei, and T Kawada, and R Kazuki, and E Sugimoto
October 1993, The Biochemical journal,
Y Kamei, and T Kawada, and R Kazuki, and E Sugimoto
November 2000, Biochemical and biophysical research communications,
Copied contents to your clipboard!