TPA-induced differentiation of human rhabdomyosarcoma cells: expression of the myogenic regulatory factors. 1993

M Bouché, and M I Senni, and A M Grossi, and F Zappelli, and M Polimeni, and H H Arnold, and G Cossu, and M Molinaro
Istituto di Istologia ed Embriologia Generale, Fac. di Medicina, Università di Roma La Sapienza, Italy.

RD cells (a cell line derived from a human rhabdomyosarcoma) undergo a very limited myogenic differentiation despite the fact that they express several myogenic determination genes. Since we have previously shown (Aguanno et al., Cancer Res. 50, 3377, 1990) that the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) induces myogenic differentiation in these cells, in this paper we investigate the mechanism by which TPA interferes with the expression and/or function of the myogenic determination genes. Northern blot analysis revealed that RD cells express the myf3 (the human analog of MyoD) and myf4 (the human analog of myogenin) transcripts, but not myf5 or myf6 transcripts. The myf3 and the myf4 gene products are correctly translated and accumulated in the nuclei as shown by immunofluorescence analysis. The tumor promoter (TPA) does not modify the pattern of expression of the myf factors while it induces the accumulation of muscle-specific transcripts, such as alpha-actin and fast myosin light chain 1, and their corresponding proteins. On the other hand, within 1 day of treatment, TPA inhibits the expression of the Id gene, which is a negative regulator of MyoD activity. However, while the TPA-induced inhibition of Id message accumulation correlates with differentiation, cell confluence also causes a reduction in Id message accumulation, without inducing differentiation. Under our experimental conditions, overexpression of any of the myf cDNAs in RD cells does induce spontaneous differentiation but enhances the effect of TPA treatment independently from the level of the expressed message. These data suggest that differentiation of RD cells is likely to depend upon the activity of complexes containing the various members of the MyoD family, which can be regulated by proteins affecting MyoD dimerization such as Id, but also by other mechanisms induced by TPA, such as phosphorylation.

UI MeSH Term Description Entries
D009124 Muscle Proteins The protein constituents of muscle, the major ones being ACTINS and MYOSINS. More than a dozen accessory proteins exist including TROPONIN; TROPOMYOSIN; and DYSTROPHIN. Muscle Protein,Protein, Muscle,Proteins, Muscle
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009218 Myosins A diverse superfamily of proteins that function as translocating proteins. They share the common characteristics of being able to bind ACTINS and hydrolyze MgATP. Myosins generally consist of heavy chains which are involved in locomotion, and light chains which are involved in regulation. Within the structure of myosin heavy chain are three domains: the head, the neck and the tail. The head region of the heavy chain contains the actin binding domain and MgATPase domain which provides energy for locomotion. The neck region is involved in binding the light-chains. The tail region provides the anchoring point that maintains the position of the heavy chain. The superfamily of myosins is organized into structural classes based upon the type and arrangement of the subunits they contain. Myosin ATPase,ATPase, Actin-Activated,ATPase, Actomyosin,ATPase, Myosin,Actin-Activated ATPase,Actomyosin ATPase,Actomyosin Adenosinetriphosphatase,Adenosine Triphosphatase, Myosin,Adenosinetriphosphatase, Actomyosin,Adenosinetriphosphatase, Myosin,Myosin,Myosin Adenosinetriphosphatase,ATPase, Actin Activated,Actin Activated ATPase,Myosin Adenosine Triphosphatase
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012208 Rhabdomyosarcoma A malignant solid tumor arising from mesenchymal tissues which normally differentiate to form striated muscle. It can occur in a wide variety of sites. It is divided into four distinct types: pleomorphic, predominantly in male adults; alveolar (RHABDOMYOSARCOMA, ALVEOLAR), mainly in adolescents and young adults; embryonal (RHABDOMYOSARCOMA, EMBRYONAL), predominantly in infants and children; and botryoidal, also in young children. It is one of the most frequently occurring soft tissue sarcomas and the most common in children under 15. (From Dorland, 27th ed; Holland et al., Cancer Medicine, 3d ed, p2186; DeVita Jr et al., Cancer: Principles & Practice of Oncology, 3d ed, pp1647-9) Rhabdomyosarcomas
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D013755 Tetradecanoylphorbol Acetate A phorbol ester found in CROTON OIL with very effective tumor promoting activity. It stimulates the synthesis of both DNA and RNA. Phorbol Myristate Acetate,12-Myristoyl-13-acetylphorbol,12-O-Tetradecanoyl Phorbol 13-Acetate,Tetradecanoylphorbol Acetate, 4a alpha-Isomer,12 Myristoyl 13 acetylphorbol,12 O Tetradecanoyl Phorbol 13 Acetate,13-Acetate, 12-O-Tetradecanoyl Phorbol,Acetate, Phorbol Myristate,Acetate, Tetradecanoylphorbol,Myristate Acetate, Phorbol,Phorbol 13-Acetate, 12-O-Tetradecanoyl,Tetradecanoylphorbol Acetate, 4a alpha Isomer

Related Publications

M Bouché, and M I Senni, and A M Grossi, and F Zappelli, and M Polimeni, and H H Arnold, and G Cossu, and M Molinaro
July 1989, Cancer research,
M Bouché, and M I Senni, and A M Grossi, and F Zappelli, and M Polimeni, and H H Arnold, and G Cossu, and M Molinaro
July 1994, Biochemical and biophysical research communications,
M Bouché, and M I Senni, and A M Grossi, and F Zappelli, and M Polimeni, and H H Arnold, and G Cossu, and M Molinaro
January 2017, eLife,
M Bouché, and M I Senni, and A M Grossi, and F Zappelli, and M Polimeni, and H H Arnold, and G Cossu, and M Molinaro
September 2009, Cell biology international,
M Bouché, and M I Senni, and A M Grossi, and F Zappelli, and M Polimeni, and H H Arnold, and G Cossu, and M Molinaro
April 1992, International journal of cancer,
M Bouché, and M I Senni, and A M Grossi, and F Zappelli, and M Polimeni, and H H Arnold, and G Cossu, and M Molinaro
March 1995, Science in China. Series B, Chemistry, life sciences & earth sciences,
M Bouché, and M I Senni, and A M Grossi, and F Zappelli, and M Polimeni, and H H Arnold, and G Cossu, and M Molinaro
May 1997, Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research,
M Bouché, and M I Senni, and A M Grossi, and F Zappelli, and M Polimeni, and H H Arnold, and G Cossu, and M Molinaro
February 1999, International journal of molecular medicine,
M Bouché, and M I Senni, and A M Grossi, and F Zappelli, and M Polimeni, and H H Arnold, and G Cossu, and M Molinaro
August 2001, Gene,
M Bouché, and M I Senni, and A M Grossi, and F Zappelli, and M Polimeni, and H H Arnold, and G Cossu, and M Molinaro
August 2003, Molecular cancer research : MCR,
Copied contents to your clipboard!