The mechanism for the disparate actions of calcitriol and 22-oxacalcitriol in the intestine. 1993

A J Brown, and J Finch, and M Grieff, and C Ritter, and N Kubodera, and Y Nishii, and E Slatopolsky
Renal Division, Washington University School of Medicine, St. Louis, Missouri 63110.

22-Oxacalcitriol (OCT) is one of several new analogs of vitamin D that retain many of the therapeutically useful properties of 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3], but have much less calcemic activity. In the present study we examined the actions of OCT on intestinal calcium absorption and calbindin D9k mRNA in vitamin D-deficient rats. After ip injection of OCT (1 microgram/kg), calcium absorption increased significantly by 2 h and was maximal at 4 h (2.5-fold above control), but returned to pretreatment levels by 16 h. In contrast, the same dose of 1,25-(OH)2D3 caused a 3-fold increase in calcium absorption, which lasted more than 48 h. The transient effect of OCT on calcium absorption was also observed when the analog was infused at a dose of 1 micrograms/kg.day for 3 days. At the end of the infusion period, calcium absorption was 3-fold higher than that in vehicle-infused controls, but fell to pretreatment levels by 24 h after removing the minipumps. The time courses for induction of calbindin D9k mRNA were similar for OCT and 1,25-(OH)2D3, with no change observed until more than 4 h after injection. However, calbindin mRNA levels returned to pretreatment values more rapidly in the OCT-treated rats. Consistent with these findings, we observed that a 1 microgram/kg dose of [3H] OCT was completely cleared by 4-6 h after injection. This was paralleled by a loss of [3H]OCT associated with the intestinal vitamin D receptor. The rapid clearance of OCT is probably due to its low affinity for the serum vitamin D-binding protein. This low affinity would also be expected to allow greater accessibility to target cells. In support of this, we found that higher amounts of OCT than 1,25-(OH)2D3 were associated with the intestinal vitamin D receptor after the injection of several doses of these tritiated ligands. In summary, our results indicate that the pharmacokinetic properties of OCT are responsible at least in part for its low calcemic activity. Furthermore, comparison of the transient elevation of calcium absorption by OCT with its more prolonged effects on PTH and calbindin D9k indicates that each action of vitamin D compounds has a distinct biological half-life. The short circulating half-life of OCT can exploit these differences to provide a therapeutic advantage in the treatment of vitamin D-responsive diseases.

UI MeSH Term Description Entries
D007408 Intestinal Absorption Uptake of substances through the lining of the INTESTINES. Absorption, Intestinal
D007413 Intestinal Mucosa Lining of the INTESTINES, consisting of an inner EPITHELIUM, a middle LAMINA PROPRIA, and an outer MUSCULARIS MUCOSAE. In the SMALL INTESTINE, the mucosa is characterized by a series of folds and abundance of absorptive cells (ENTEROCYTES) with MICROVILLI. Intestinal Epithelium,Intestinal Glands,Epithelium, Intestinal,Gland, Intestinal,Glands, Intestinal,Intestinal Gland,Mucosa, Intestinal
D007422 Intestines The section of the alimentary canal from the STOMACH to the ANAL CANAL. It includes the LARGE INTESTINE and SMALL INTESTINE. Intestine
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D011987 Receptors, Steroid Proteins found usually in the cytoplasm or nucleus that specifically bind steroid hormones and trigger changes influencing the behavior of cells. The steroid receptor-steroid hormone complex regulates the transcription of specific genes. Corticosteroid Receptors,Receptors, Corticosteroid,Steroid Receptors,Corticosteroid Receptor,Receptors, Steroids,Steroid Receptor,Receptor, Corticosteroid,Receptor, Steroid,Steroids Receptors
D002117 Calcitriol The physiologically active form of vitamin D. It is formed primarily in the kidney by enzymatic hydroxylation of 25-hydroxycholecalciferol (CALCIFEDIOL). Its production is stimulated by low blood calcium levels and parathyroid hormone. Calcitriol increases intestinal absorption of calcium and phosphorus, and in concert with parathyroid hormone increases bone resorption. 1 alpha,25-Dihydroxycholecalciferol,1 alpha,25-Dihydroxyvitamin D3,1, 25-(OH)2D3,1,25(OH)2D3,1,25-Dihydroxycholecalciferol,1,25-Dihydroxyvitamin D3,1 alpha, 25-dihydroxy-20-epi-Vitamin D3,1,25(OH)2-20epi-D3,1,25-dihydroxy-20-epi-Vitamin D3,20-epi-1alpha,25-dihydroxycholecaliferol,Bocatriol,Calcijex,Calcitriol KyraMed,Calcitriol-Nefro,Decostriol,MC-1288,MC1288,Osteotriol,Renatriol,Rocaltrol,Silkis,Sitriol,Soltriol,Tirocal,1 alpha,25 Dihydroxyvitamin D3,1,25 Dihydroxycholecalciferol,1,25 Dihydroxyvitamin D3,1,25 dihydroxy 20 epi Vitamin D3,Calcitriol Nefro,D3, 1 alpha,25-Dihydroxyvitamin,D3, 1,25-Dihydroxyvitamin,D3, 1,25-dihydroxy-20-epi-Vitamin,KyraMed, Calcitriol,MC 1288
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

A J Brown, and J Finch, and M Grieff, and C Ritter, and N Kubodera, and Y Nishii, and E Slatopolsky
November 1995, European journal of endocrinology,
A J Brown, and J Finch, and M Grieff, and C Ritter, and N Kubodera, and Y Nishii, and E Slatopolsky
October 2002, The Journal of laboratory and clinical medicine,
A J Brown, and J Finch, and M Grieff, and C Ritter, and N Kubodera, and Y Nishii, and E Slatopolsky
December 1993, Endocrinology,
A J Brown, and J Finch, and M Grieff, and C Ritter, and N Kubodera, and Y Nishii, and E Slatopolsky
September 2005, Clinical and experimental nephrology,
A J Brown, and J Finch, and M Grieff, and C Ritter, and N Kubodera, and Y Nishii, and E Slatopolsky
March 2014, Current vascular pharmacology,
A J Brown, and J Finch, and M Grieff, and C Ritter, and N Kubodera, and Y Nishii, and E Slatopolsky
January 1991, Contributions to nephrology,
A J Brown, and J Finch, and M Grieff, and C Ritter, and N Kubodera, and Y Nishii, and E Slatopolsky
November 1999, Zentralblatt fur Veterinarmedizin. Reihe A,
A J Brown, and J Finch, and M Grieff, and C Ritter, and N Kubodera, and Y Nishii, and E Slatopolsky
January 2001, Steroids,
A J Brown, and J Finch, and M Grieff, and C Ritter, and N Kubodera, and Y Nishii, and E Slatopolsky
February 2020, Oncotarget,
A J Brown, and J Finch, and M Grieff, and C Ritter, and N Kubodera, and Y Nishii, and E Slatopolsky
June 1992, Chemical & pharmaceutical bulletin,
Copied contents to your clipboard!