Comparison of the structures of the quinone-binding sites in beef heart mitochondria. 1993

A K Tan, and R R Ramsay, and T P Singer, and H Miyoshi
Department of Biochemistry and Biophysics, University of California, San Francisco 94143.

The ubiquinone pool in mitochondrial membranes serves as an electron carrier between both NADH-coenzyme Q oxidoreductase (Complex I) and succinate-coenzyme Q oxidoreductase (Complex II) and ubiquinol-cytochrome-c oxidoreductase (Complex III). It has been reported (Saitoh, I., Miyoshi, H., Shimizu, R., and Iwamura, H. (1992) Eur. J. Biochem. 209, 73-79) that 2-alkyl-4,6-dinitrophenols compete with exogenous coenzyme Q (Q) to inhibit electron transport through cytochromes b and c1 in mammalian mitochondria as well as in photosystem II. We have probed the similarities and differences in the reaction sites of exogenous Q in all three segments of the respiratory chain using selected 2-alkyl-4,6-dinitrophenols. The inhibition of Q analog reduction by the dinitrophenol derivatives was competitive for Complex I and noncompetitive for Complex II. The inhibition of Complex III was competitive with the pentyl analog, but was uncompetitive with the decyl analog, which may be due to different interactions of the two quinol analogs with Complex III. The degree of inhibition by several of these compounds was comparable for Complexes I and III, but Complex II was inhibited to a much smaller extent. The inhibitory potency of these compounds for Complexes I and III was increased by branching and by lengthening the carbon chain at the 2-position equivalent to the isoprenoid side chain of ubiquinone. Hydrophobic substituents increased the inhibition of Complex II. Replacement of the phenolic OH group by a chlorine atom decreased the maximum inhibition of Complex III, but increased that of Complex I. These data suggest that the structures of the exogenous Q-binding sites in Complexes I and III may be similar, but not identical, and that they are different from that in Complex II.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008929 Mitochondria, Heart The mitochondria of the myocardium. Heart Mitochondria,Myocardial Mitochondria,Mitochondrion, Heart,Heart Mitochondrion,Mitochondria, Myocardial
D009097 Multienzyme Complexes Systems of enzymes which function sequentially by catalyzing consecutive reactions linked by common metabolic intermediates. They may involve simply a transfer of water molecules or hydrogen atoms and may be associated with large supramolecular structures such as MITOCHONDRIA or RIBOSOMES. Complexes, Multienzyme
D010088 Oxidoreductases The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9) Dehydrogenases,Oxidases,Oxidoreductase,Reductases,Dehydrogenase,Oxidase,Reductase
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D004140 Dinitrophenols Organic compounds that contain two nitro groups attached to a phenol.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D001667 Binding, Competitive The interaction of two or more substrates or ligands with the same binding site. The displacement of one by the other is used in quantitative and selective affinity measurements. Competitive Binding
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships

Related Publications

A K Tan, and R R Ramsay, and T P Singer, and H Miyoshi
August 1979, Biochemical and biophysical research communications,
A K Tan, and R R Ramsay, and T P Singer, and H Miyoshi
July 1957, Biochimica et biophysica acta,
A K Tan, and R R Ramsay, and T P Singer, and H Miyoshi
January 1989, Biochimica et biophysica acta,
A K Tan, and R R Ramsay, and T P Singer, and H Miyoshi
February 1972, Biochimica et biophysica acta,
A K Tan, and R R Ramsay, and T P Singer, and H Miyoshi
August 1999, Biochemical Society transactions,
A K Tan, and R R Ramsay, and T P Singer, and H Miyoshi
November 1970, Biochimica et biophysica acta,
A K Tan, and R R Ramsay, and T P Singer, and H Miyoshi
August 1980, The Journal of biological chemistry,
A K Tan, and R R Ramsay, and T P Singer, and H Miyoshi
June 1968, Biochemical and biophysical research communications,
A K Tan, and R R Ramsay, and T P Singer, and H Miyoshi
August 1999, Biochemical Society transactions,
A K Tan, and R R Ramsay, and T P Singer, and H Miyoshi
March 1971, Biochimica et biophysica acta,
Copied contents to your clipboard!