Kinetic model of water and urea permeability regulation by vasopressin in collecting duct. 1993

M A Knepper, and S Nielsen
Laboratory of Kidney and Electrolyte Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892.

We present a mathematical model describing the kinetics of water-channel and urea-carrier regulation by vasopressin in the apical membrane of collecting duct cells. The rate of change of the number of activated channels or carriers in the apical membrane is modeled as a balance between the rate of activation (or exocytic insertion) and the rate of inactivation (or endocytic retrieval) of transporters. In a three-state version of the model, transporters are assumed to be partitioned into three physical states, i.e., an "activated" state that imparts a permeation pathway to the apical membrane, an "inactivated" state, and a "reserve" state. Both activation and inactivation are represented by first-order kinetic equations describing transition from reserve to activated transporters and from activated to inactivated transporters, respectively. A simplified two-state model is derived from the three-state model, with the assumption that the transformation from inactivated to reserve transporter occurs rapidly relative to the other state transitions. Simulated time courses obtained by solving model equations are compared with experimentally determined time courses to test whether the response to vasopressin in isolated inner medullary collecting duct segments can be explained by direct effects on the rate constants for activation or inactivation. The results indicate that, for both transporters, it must be assumed that vasopressin directly regulates rate constants for both activation (exocytosis) and inactivation (endocytosis) to account for the experimentally determined dynamic responses to vasopressin and its withdrawal. These studies provide a theoretical basis on which to design further experimental studies.

UI MeSH Term Description Entries
D007685 Kidney Tubules, Collecting Straight tubes commencing in the radiate part of the kidney cortex where they receive the curved ends of the distal convoluted tubules. In the medulla the collecting tubules of each pyramid converge to join a central tube (duct of Bellini) which opens on the summit of the papilla. Kidney Collecting Ducts,Kidney Collecting Duct,Collecting Duct, Kidney,Collecting Ducts, Kidney
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D010539 Permeability Property of membranes and other structures to permit passage of light, heat, gases, liquids, metabolites, and mineral ions. Permeabilities
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014508 Urea A compound formed in the liver from ammonia produced by the deamination of amino acids. It is the principal end product of protein catabolism and constitutes about one half of the total urinary solids. Basodexan,Carbamide,Carmol
D014667 Vasopressins Antidiuretic hormones released by the NEUROHYPOPHYSIS of all vertebrates (structure varies with species) to regulate water balance and OSMOLARITY. In general, vasopressin is a nonapeptide consisting of a six-amino-acid ring with a cysteine 1 to cysteine 6 disulfide bridge or an octapeptide containing a CYSTINE. All mammals have arginine vasopressin except the pig with a lysine at position 8. Vasopressin, a vasoconstrictor, acts on the KIDNEY COLLECTING DUCTS to increase water reabsorption, increase blood volume and blood pressure. Antidiuretic Hormone,Antidiuretic Hormones,beta-Hypophamine,Pitressin,Vasopressin,Vasopressin (USP),Hormone, Antidiuretic,beta Hypophamine
D014867 Water A clear, odorless, tasteless liquid that is essential for most animal and plant life and is an excellent solvent for many substances. The chemical formula is hydrogen oxide (H2O). (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Hydrogen Oxide

Related Publications

M A Knepper, and S Nielsen
January 1994, The American journal of physiology,
M A Knepper, and S Nielsen
July 1993, The American journal of physiology,
M A Knepper, and S Nielsen
May 2006, Rossiiskii fiziologicheskii zhurnal imeni I.M. Sechenova,
M A Knepper, and S Nielsen
January 1961, The Journal of clinical investigation,
M A Knepper, and S Nielsen
October 1992, The Journal of clinical investigation,
M A Knepper, and S Nielsen
May 1991, The American journal of physiology,
M A Knepper, and S Nielsen
September 1991, The American journal of physiology,
M A Knepper, and S Nielsen
September 1990, Cell and tissue kinetics,
M A Knepper, and S Nielsen
January 2005, Journal de la Societe de biologie,
M A Knepper, and S Nielsen
July 1968, The American journal of physiology,
Copied contents to your clipboard!