The effect of cytoplasmic domain mutations on membrane anchoring and glycoprotein processing of herpes simplex virus type 1 glycoprotein C. 1993

A M Skoff, and T C Holland
Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, Michigan 48201.

The predicted amino acid sequence of herpes simplex virus type 1 glycoprotein C (HSV-1 gC) shows that it has the features of a typical type 1 integral membrane protein: a cleavable N-terminal signal sequence, a glycosylated ectodomain, a single transmembrane domain, and a small, charged cytoplasmic domain. In an earlier investigation of the function of the gC cytoplasmic domain, it was shown that the gC synthesized by a gC mutant, dl2, which lacked the last three residues of the transmembrane domain and the entire cytoplasmic domain, was initially synthesized as a membrane bound glycoprotein, but was not stably anchored in the plasma membrane. In this study, we generated a panel of four HSV-1 gC mutants with novel cytoplasmic domains in order to further delineate the role of this domain in stable anchoring and to investigate the role of charged residues in this process. The cytoplasmic domain mutants produced significant quantities of a novel precursor (pgC-86K), approximately 6K smaller than the wild-type gC precursor. The quantity of pgC-86K correlated with the number of positive charges in the cytoplasmic domain. Although the nature of the novel form of the precursor is unclear, its correlation with cytoplasmic domain charge suggests that an important function of this domain is to influence gC processing. Significantly, restoration of the carboxy-terminal 3 amino acids of the gC transmembrane domain restored the wild-type anchoring phenotype to gC, indicating that the cytoplasmic domain is not required for membrane anchoring. Further characterization of dl2 gC confirmed that this glycoprotein is not released from the membrane by proteolysis. We suggest that the addition of three additional hydrophobic residues to the dl2 transmembrane domain increases its hydrophobicity enough to stabilize membrane anchoring of the glycoprotein.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D011498 Protein Precursors Precursors, Protein
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D011995 Recombination, Genetic Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses. Genetic Recombination,Recombination,Genetic Recombinations,Recombinations,Recombinations, Genetic
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003488 Cyanogen Bromide Cyanogen bromide (CNBr). A compound used in molecular biology to digest some proteins and as a coupling reagent for phosphoroamidate or pyrophosphate internucleotide bonds in DNA duplexes. Bromide, Cyanogen
D004252 DNA Mutational Analysis Biochemical identification of mutational changes in a nucleotide sequence. Mutational Analysis, DNA,Analysis, DNA Mutational,Analyses, DNA Mutational,DNA Mutational Analyses,Mutational Analyses, DNA
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

Copied contents to your clipboard!