The electrophysiological characteristics of hypertrophied ventricular myocytes from the spontaneously hypertensive rat. 1993

P Brooksby, and A J Levi, and J V Jones
Department of Physiology, School of Medical Sciences, University of Bristol, UK.

OBJECTIVE Previous studies on multicellular preparations have shown that hypertrophied cardiac muscle from the spontaneously hypertensive rat (SHR) has a prolonged action potential. The first aim of the present study was to determine whether the action potential of isolated left ventricular myocytes was similarly prolonged and to study the underlying membrane currents that might be responsible. The second aim was to evaluate the L-type calcium current amplitude of SHR myocytes, as we have recently shown that they have an increased contraction and an increase in the calcium trigger entering via the L-type calcium channel might be one possible mechanism for this. METHODS The electrophysiological characteristics of left ventricular myocytes isolated from the SHR were compared with those from normotensive control rats. Action potentials were recorded with microelectrodes. Cells were voltage-clamped and the membrane currents elicited by steps to different potentials were analysed. Blockers of potassium and calcium currents were used to reveal the contribution made by these currents to net membrane currents. RESULTS SHR myocytes had prolonged action potentials. The action potential duration of SHR myocytes at 90% repolarization was found to be longer, although at 20% and 50% repolarization no difference was found. There was no difference in the resting membrane potential between SHR and control myocytes. Using a voltage clamp we studied the L-type calcium current and potassium currents. The major change in SHR myocytes was a decrease in the magnitude (normalized to the membrane capacitance) of the inward rectifier potassium current elicited by negative potentials. There was no detectable difference in either the transient outward or delayed rectifier potassium currents. We also found no difference in the magnitude, time course or voltage dependence of L-type calcium current in hypertrophied SHR myocytes. CONCLUSIONS First, the action potential of SHR myocytes was prolonged compared with control myocytes. Secondly, the main change in SHR myocytes was that pulses to negative potentials elicited a lower inward rectifier potassium current. A reduction in the density of inward rectifier channels might play a role in prolonging the SHR action potential, since a lower outward repolarizing current will flow through inward rectifier potassium channels during the SHR action potential repolarization. Thirdly, there was no difference in L-type calcium current density or time course between SHR and control myocytes. Thus, a change in L-type calcium current probably plays no role in causing the prolonged SHR action potential or the increased contraction of hypertrophied SHR ventricular myocytes. Finally, the prolonged action potential in SHR myocytes may itself be one factor responsible for the increased contraction of these cells.

UI MeSH Term Description Entries
D006973 Hypertension Persistently high systemic arterial BLOOD PRESSURE. Based on multiple readings (BLOOD PRESSURE DETERMINATION), hypertension is currently defined as when SYSTOLIC PRESSURE is consistently greater than 140 mm Hg or when DIASTOLIC PRESSURE is consistently 90 mm Hg or more. Blood Pressure, High,Blood Pressures, High,High Blood Pressure,High Blood Pressures
D008297 Male Males
D011918 Rats, Inbred SHR A strain of Rattus norvegicus with elevated blood pressure used as a model for studying hypertension and stroke. Rats, Spontaneously Hypertensive,Rats, SHR,Inbred SHR Rat,Inbred SHR Rats,Rat, Inbred SHR,Rat, SHR,Rat, Spontaneously Hypertensive,SHR Rat,SHR Rat, Inbred,SHR Rats,SHR Rats, Inbred,Spontaneously Hypertensive Rat,Spontaneously Hypertensive Rats
D011921 Rats, Inbred WKY A strain of Rattus norvegicus used as a normotensive control for the spontaneous hypertensive rats (SHR). Rats, Wistar Kyoto,Wistar Kyoto Rat,Rats, WKY,Inbred WKY Rat,Inbred WKY Rats,Kyoto Rat, Wistar,Rat, Inbred WKY,Rat, WKY,Rat, Wistar Kyoto,WKY Rat,WKY Rat, Inbred,WKY Rats,WKY Rats, Inbred,Wistar Kyoto Rats
D006321 Heart The hollow, muscular organ that maintains the circulation of the blood. Hearts
D006332 Cardiomegaly Enlargement of the HEART, usually indicated by a cardiothoracic ratio above 0.50. Heart enlargement may involve the right, the left, or both HEART VENTRICLES or HEART ATRIA. Cardiomegaly is a nonspecific symptom seen in patients with chronic systolic heart failure (HEART FAILURE) or several forms of CARDIOMYOPATHIES. Cardiac Hypertrophy,Enlarged Heart,Heart Hypertrophy,Heart Enlargement,Cardiac Hypertrophies,Enlargement, Heart,Heart Hypertrophies,Heart, Enlarged,Hypertrophies, Cardiac,Hypertrophies, Heart,Hypertrophy, Cardiac,Hypertrophy, Heart
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015220 Calcium Channels Voltage-dependent cell membrane glycoproteins selectively permeable to calcium ions. They are categorized as L-, T-, N-, P-, Q-, and R-types based on the activation and inactivation kinetics, ion specificity, and sensitivity to drugs and toxins. The L- and T-types are present throughout the cardiovascular and central nervous systems and the N-, P-, Q-, & R-types are located in neuronal tissue. Ion Channels, Calcium,Receptors, Calcium Channel Blocker,Voltage-Dependent Calcium Channel,Calcium Channel,Calcium Channel Antagonist Receptor,Calcium Channel Antagonist Receptors,Calcium Channel Blocker Receptor,Calcium Channel Blocker Receptors,Ion Channel, Calcium,Receptors, Calcium Channel Antagonist,VDCC,Voltage-Dependent Calcium Channels,Calcium Channel, Voltage-Dependent,Calcium Channels, Voltage-Dependent,Calcium Ion Channel,Calcium Ion Channels,Channel, Voltage-Dependent Calcium,Channels, Voltage-Dependent Calcium,Voltage Dependent Calcium Channel,Voltage Dependent Calcium Channels
D015221 Potassium Channels Cell membrane glycoproteins that are selectively permeable to potassium ions. At least eight major groups of K channels exist and they are made up of dozens of different subunits. Ion Channels, Potassium,Ion Channel, Potassium,Potassium Channel,Potassium Ion Channels,Channel, Potassium,Channel, Potassium Ion,Channels, Potassium,Channels, Potassium Ion,Potassium Ion Channel

Related Publications

P Brooksby, and A J Levi, and J V Jones
June 1999, Journal of physiology and pharmacology : an official journal of the Polish Physiological Society,
P Brooksby, and A J Levi, and J V Jones
September 2014, Clinical and experimental pharmacology & physiology,
P Brooksby, and A J Levi, and J V Jones
January 1980, Scanning electron microscopy,
P Brooksby, and A J Levi, and J V Jones
April 2001, Archives of physiology and biochemistry,
P Brooksby, and A J Levi, and J V Jones
September 2014, Hypertension research : official journal of the Japanese Society of Hypertension,
P Brooksby, and A J Levi, and J V Jones
November 2014, Naunyn-Schmiedeberg's archives of pharmacology,
P Brooksby, and A J Levi, and J V Jones
February 2006, Zhonghua xin xue guan bing za zhi,
P Brooksby, and A J Levi, and J V Jones
August 1994, Circulation research,
Copied contents to your clipboard!