GABAA receptor subtypes: ligand binding heterogeneity demonstrated by photoaffinity labeling and autoradiography. 1993

M H Bureau, and R W Olsen
Department of Pharmacology, School of Medicine, Mental Retardation Research Center, University of California, Los Angeles 90024-1735.

Heterogeneity of binding affinities for a variety of ligands was observed for gamma-aminobutyric acid type A (GABAA) receptors in the rat CNS, at both GABA and benzodiazepine recognition sites. Photoaffinity labeling by [3H]flunitrazepam and [3H]muscimol to affinity column-purified receptor proteins was examined by gel electrophoresis in sodium dodecyl sulfate. Anesthetic barbiturates (pentobarbital) and steroids (alphaxalone) both differentially stimulated the incorporation of [3H]flunitrazepam more so into the 51-kDa alpha 1 subunit than into the 53-kDa alpha 2 polypeptide, and incorporation of [3H]muscimol into the 55-kDa beta 2 subunit more so than the 58-kDa beta 3 polypeptide. Binding to these polypeptides was also affected differentially by other allosteric modulators and competitive inhibitors, including the benzodiazepine "type 1" selective ligand CL218,872. Heterogeneity in affinity of this drug for the single 51-kDa alpha 1 polypeptide strongly suggests that type I receptors, like type II, are heterogeneous. In brain sections, the extent of enhancement of [3H]muscimol binding showed significant regional variation, similar for both steroids and barbiturates, and the GABA analogues THIP and taurine inhibited muscimol binding with regional variations in affinity that were almost opposites of each other. Modulation of [3H]flunitrazepam binding by steroids, barbiturates, and THIP significantly varied with regions. Taken together, ligand binding heterogeneity exhibited by photoaffinity labeling and autoradiography demonstrate the existence of multiple pharmacological-binding subtypes resulting from the combination of multiple polypeptide gene products into several oligomeric isoreceptors. Comparison of the regional distribution of binding subtypes with that of different subunit gene products allows the following conclusions about possible subunit compositions of native pharmacological receptor subtypes present in the brain: Benzodiazepine pharmacology of the oligomeric receptor isoforms is dependent on the nature of alpha and subunits other than alpha, GABA-benzodiazepine coupling is dependent on the nature of the alpha subunits, GABA site pharmacology is dependent on the nature of the beta subunits, and several subunits including alpha and beta contribute to the degree of sensitivity to steroids and barbiturates. Finally, the presence of discrete subunits may be necessary but is not sufficient to postulate a defined pharmacological property.

UI MeSH Term Description Entries
D009118 Muscimol A neurotoxic isoxazole isolated from species of AMANITA. It is obtained by decarboxylation of IBOTENIC ACID. Muscimol is a potent agonist of GABA-A RECEPTORS and is used mainly as an experimental tool in animal and tissue studies. Agarin,Pantherine
D011963 Receptors, GABA-A Cell surface proteins which bind GAMMA-AMINOBUTYRIC ACID and contain an integral membrane chloride channel. Each receptor is assembled as a pentamer from a pool of at least 19 different possible subunits. The receptors belong to a superfamily that share a common CYSTEINE loop. Benzodiazepine-Gaba Receptors,GABA-A Receptors,Receptors, Benzodiazepine,Receptors, Benzodiazepine-GABA,Receptors, Diazepam,Receptors, GABA-Benzodiazepine,Receptors, Muscimol,Benzodiazepine Receptor,Benzodiazepine Receptors,Benzodiazepine-GABA Receptor,Diazepam Receptor,Diazepam Receptors,GABA(A) Receptor,GABA-A Receptor,GABA-A Receptor alpha Subunit,GABA-A Receptor beta Subunit,GABA-A Receptor delta Subunit,GABA-A Receptor epsilon Subunit,GABA-A Receptor gamma Subunit,GABA-A Receptor rho Subunit,GABA-Benzodiazepine Receptor,GABA-Benzodiazepine Receptors,Muscimol Receptor,Muscimol Receptors,delta Subunit, GABA-A Receptor,epsilon Subunit, GABA-A Receptor,gamma-Aminobutyric Acid Subtype A Receptors,Benzodiazepine GABA Receptor,Benzodiazepine Gaba Receptors,GABA A Receptor,GABA A Receptor alpha Subunit,GABA A Receptor beta Subunit,GABA A Receptor delta Subunit,GABA A Receptor epsilon Subunit,GABA A Receptor gamma Subunit,GABA A Receptor rho Subunit,GABA A Receptors,GABA Benzodiazepine Receptor,GABA Benzodiazepine Receptors,Receptor, Benzodiazepine,Receptor, Benzodiazepine-GABA,Receptor, Diazepam,Receptor, GABA-A,Receptor, GABA-Benzodiazepine,Receptor, Muscimol,Receptors, Benzodiazepine GABA,Receptors, GABA A,Receptors, GABA Benzodiazepine,delta Subunit, GABA A Receptor,epsilon Subunit, GABA A Receptor,gamma Aminobutyric Acid Subtype A Receptors
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D005445 Flunitrazepam A benzodiazepine with pharmacologic actions similar to those of DIAZEPAM that can cause ANTEROGRADE AMNESIA. Some reports indicate that it is used as a date rape drug and suggest that it may precipitate violent behavior. The United States Government has banned the importation of this drug. Fluridrazepam,Rohypnol,Fluni 1A Pharma,Flunibeta,Flunimerck,Fluninoc,Flunitrazepam-Neuraxpharm,Flunitrazepam-Ratiopharm,Flunitrazepam-Teva,Flunizep Von Ct,Narcozep,RO-5-4200,Rohipnol,Flunitrazepam Neuraxpharm,Flunitrazepam Ratiopharm,Flunitrazepam Teva,RO54200,Von Ct, Flunizep
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt
D000345 Affinity Labels Analogs of those substrates or compounds which bind naturally at the active sites of proteins, enzymes, antibodies, steroids, or physiological receptors. These analogs form a stable covalent bond at the binding site, thereby acting as inhibitors of the proteins or steroids. Affinity Labeling Reagents,Labeling Reagents, Affinity,Labels, Affinity,Reagents, Affinity Labeling
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001345 Autoradiography The making of a radiograph of an object or tissue by recording on a photographic plate the radiation emitted by radioactive material within the object. (Dorland, 27th ed) Radioautography
D014018 Tissue Distribution Accumulation of a drug or chemical substance in various organs (including those not relevant to its pharmacologic or therapeutic action). This distribution depends on the blood flow or perfusion rate of the organ, the ability of the drug to penetrate organ membranes, tissue specificity, protein binding. The distribution is usually expressed as tissue to plasma ratios. Distribution, Tissue,Distributions, Tissue,Tissue Distributions
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

M H Bureau, and R W Olsen
January 2007, The Journal of biological chemistry,
M H Bureau, and R W Olsen
January 2024, Methods in molecular biology (Clifton, N.J.),
M H Bureau, and R W Olsen
March 1985, Journal of neurochemistry,
M H Bureau, and R W Olsen
March 1988, The Journal of pharmacology and experimental therapeutics,
M H Bureau, and R W Olsen
April 2015, Bioorganic & medicinal chemistry letters,
M H Bureau, and R W Olsen
July 2006, Annals of the New York Academy of Sciences,
M H Bureau, and R W Olsen
July 1992, The Journal of biological chemistry,
Copied contents to your clipboard!