Dietary fat saturation modifies the metabolism of LDL subfractions in guinea pigs. 1993

M L Fernandez, and G Abdel-Fattah, and D J McNamara
Department of Nutritional Sciences, University of Arizona, Tucson 85721.

The effects of dietary fat saturation on the metabolism of low-density lipoprotein (LDL) subfractions were measured in adult male guinea pigs fed semipurified diets containing 15% (wt/wt) corn oil (CO; 58% linoleic acid), lard (24% palmitic/14% stearic acid), or palm kernel oil (PK; 52% lauric/18% myristic acid). Animals fed the CO diet had lower plasma total cholesterol levels than guinea pigs fed the PK or lard diets (P < .01). Plasma LDL-1 (d = 1.019 to 1.05 g/mL) concentrations were 3.5- and 2.4-fold higher in animals fed the PK diet compared with the CO and lard groups, respectively, while LDL-2 (d = 1.05 to 1.09 g/mL) concentrations were not different among groups. For all dietary fat groups LDL-1 had a higher molecular weight and a larger diameter than LDL-2. LDL fractional catabolic rates (FCRs) varied, depending on both the diet and the LDL subfraction. Animals fed the polyunsaturated CO diet had a more rapid LDL FCR than animals from the other two groups (P < .01). Within the same diet group, LDL-2 exhibited a slower turnover rate than LDL-1 in animals fed the PK diet, while no differences in LDL subfraction FCR were found in the CO and lard groups. Animals fed the PK and lard diets did not exhibit significant modifications in the density distribution of LDL subfractions over a period of 33 hours. In contrast, animals fed the CO diet exhibited a shift of more buoyant to denser LDL particles, suggesting that differences in LDL intravascular processing are mediated by dietary fat saturation. In vitro LDL binding to hepatic membranes confirmed the in vivo data with an increased expression of apolipoprotein B/E receptors (Bmax) in animals fed the CO diet (P < .01). Hepatic apolipoprotein B/E receptors exhibited less affinity for LDL-2 in the PK group, a result consistent with the less rapid turnover of LDL-2 in PK-fed animals. The results suggest that dietary fatty acids varying in saturation and composition have distinctive atherogenic potentials. The lowest plasma LDL cholesterol concentrations mediated by CO intake could in part be explained by induced changes in the composition and processing of LDL subfractions, resulting in faster LDL turnover rates in addition to increased expression of hepatic apolipoprotein B/E receptors.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D008074 Lipoproteins Lipid-protein complexes involved in the transportation and metabolism of lipids in the body. They are spherical particles consisting of a hydrophobic core of TRIGLYCERIDES and CHOLESTEROL ESTERS surrounded by a layer of hydrophilic free CHOLESTEROL; PHOSPHOLIPIDS; and APOLIPOPROTEINS. Lipoproteins are classified by their varying buoyant density and sizes. Circulating Lipoproteins,Lipoprotein,Lipoproteins, Circulating
D008077 Lipoproteins, LDL A class of lipoproteins of small size (18-25 nm) and light (1.019-1.063 g/ml) particles with a core composed mainly of CHOLESTEROL ESTERS and smaller amounts of TRIGLYCERIDES. The surface monolayer consists mostly of PHOSPHOLIPIDS, a single copy of APOLIPOPROTEIN B-100, and free cholesterol molecules. The main LDL function is to transport cholesterol and cholesterol esters to extrahepatic tissues. Low-Density Lipoprotein,Low-Density Lipoproteins,beta-Lipoprotein,beta-Lipoproteins,LDL(1),LDL(2),LDL-1,LDL-2,LDL1,LDL2,Low-Density Lipoprotein 1,Low-Density Lipoprotein 2,LDL Lipoproteins,Lipoprotein, Low-Density,Lipoproteins, Low-Density,Low Density Lipoprotein,Low Density Lipoprotein 1,Low Density Lipoprotein 2,Low Density Lipoproteins,beta Lipoprotein,beta Lipoproteins
D008297 Male Males
D010938 Plant Oils Oils derived from plants or plant products. Oils, Plant,Oils, Vegetable,Plant Oil,Vegetable Oil,Vegetable Oils,Oil, Plant,Oil, Vegetable
D002499 Centrifugation, Density Gradient Separation of particles according to density by employing a gradient of varying densities. At equilibrium each particle settles in the gradient at a point equal to its density. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Centrifugations, Density Gradient,Density Gradient Centrifugation,Density Gradient Centrifugations,Gradient Centrifugation, Density,Gradient Centrifugations, Density
D002784 Cholesterol The principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils. Epicholesterol
D003314 Corn Oil Oil from ZEA MAYS or corn plant. Maize Oil,Lipomul,Corn Oils,Lipomuls,Maize Oils,Oil, Corn,Oil, Maize,Oils, Corn,Oils, Maize
D004041 Dietary Fats Fats present in food, especially in animal products such as meat, meat products, butter, ghee. They are present in lower amounts in nuts, seeds, and avocados. Fats, Dietary,Dietary Fat,Fat, Dietary
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D000073878 Palm Oil Nutritive oil extracted from the fleshy mesocarp of the fruit of the African palm tree, Elaeis guineensis. Palmolein,Oil, Palm

Related Publications

M L Fernandez, and G Abdel-Fattah, and D J McNamara
January 1995, Atherosclerosis,
M L Fernandez, and G Abdel-Fattah, and D J McNamara
March 1994, Journal of lipid research,
M L Fernandez, and G Abdel-Fattah, and D J McNamara
March 1994, The Journal of nutrition,
M L Fernandez, and G Abdel-Fattah, and D J McNamara
July 1998, Metabolism: clinical and experimental,
M L Fernandez, and G Abdel-Fattah, and D J McNamara
April 2000, Atherosclerosis,
M L Fernandez, and G Abdel-Fattah, and D J McNamara
September 1998, The Journal of nutrition,
M L Fernandez, and G Abdel-Fattah, and D J McNamara
October 1992, The Journal of nutrition,
M L Fernandez, and G Abdel-Fattah, and D J McNamara
April 1991, Biochimica et biophysica acta,
M L Fernandez, and G Abdel-Fattah, and D J McNamara
June 1978, Atherosclerosis,
M L Fernandez, and G Abdel-Fattah, and D J McNamara
July 1991, The Journal of nutrition,
Copied contents to your clipboard!