Stoichiometry of tight binding of magnesium and fluoride to phosphorylation and high-affinity binding of ATP, vanadate, and calcium in the sarcoplasmic reticulum Ca(2+)-ATPase. 1993

T Daiho, and T Kubota, and T Kanazawa
Department of Biochemistry, Asahikawa Medical College.

We previously showed that, when the purified Ca(2+)-ATPase from sarcoplasmic reticulum (SR) is treated with fluoride (F-) in the presence of Mg2+, a complete inactivation of the enzyme is induced by tight binding of approximately 2 mol of Mg2+ and 4 mol of F- to the catalytic site per mole of phosphorylation site [Kubota, T., Daiho, T., & Kanazawa, T. (1993) Biochim. Biophys. Acta 1163, 131-143]. Contradictorily, on the basis of the postulated content of the Ca(2+)-ATPase in F(-)-treated SR vesicles, Coll and Murphy [(1992) J. Biol. Chem. 267, 21584-21587] suggested that each inactivated enzyme contains one tightly-bound Mg2+ and two tightly-bound F-. The present study has been made to resolve this conflict. The contents of phosphorylation site, high-affinity ATP-binding site, high-affinity vanadate-binding site, and high-affinity Ca(2+)-binding site in the SR vesicles used were 3.33 +/- 0.06, 3.54 +/- 0.12, 3.34 +/- 0.04, and 6.98 +/- 0.16 nmol/mg, respectively. When the vesicles were incubated with F- in the presence of Mg2+, the Ca(2+)-ATPase was inactivated progressively. After removal of unbound Mg2+ and F- by gel filtration, tightly-bound Mg2+ and F- were determined by use of an atomic absorption spectrophotometer and a F(-)-selective electrode. A linear relationship existed between the extent of the enzyme inactivation and the contents of the tightly-bound ligands. The contents of tightly-bound Mg2+ and F- in the fully inactivated vesicles were 6.65 and 12.6 nmol/mg, respectively. The same stoichiometry was obtained with another preparation of SR vesicles.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D005459 Fluorides Inorganic salts of hydrofluoric acid, HF, in which the fluorine atom is in the -1 oxidation state. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Sodium and stannous salts are commonly used in dentifrices. Fluoride
D000252 Calcium-Transporting ATPases Cation-transporting proteins that utilize the energy of ATP hydrolysis for the transport of CALCIUM. They differ from CALCIUM CHANNELS which allow calcium to pass through a membrane without the use of energy. ATPase, Calcium,Adenosinetriphosphatase, Calcium,Ca(2+)-Transporting ATPase,Calcium ATPase,Calcium Adenosinetriphosphatase,Adenosine Triphosphatase, Calcium,Ca2+ ATPase,Calcium-ATPase,ATPase, Ca2+,ATPases, Calcium-Transporting,Calcium Adenosine Triphosphatase,Calcium Transporting ATPases,Triphosphatase, Calcium Adenosine
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2

Related Publications

T Daiho, and T Kubota, and T Kanazawa
October 1992, The Journal of biological chemistry,
T Daiho, and T Kubota, and T Kanazawa
December 1991, Journal of biochemistry,
T Daiho, and T Kubota, and T Kanazawa
March 1992, The Journal of biological chemistry,
T Daiho, and T Kubota, and T Kanazawa
April 1994, Biochimica et biophysica acta,
T Daiho, and T Kubota, and T Kanazawa
November 1986, Biochimica et biophysica acta,
T Daiho, and T Kubota, and T Kanazawa
January 1984, Zeitschrift fur Naturforschung. Section C, Biosciences,
Copied contents to your clipboard!