Substitution of asparagine for aspartate-135 in subunit I of the cytochrome bo ubiquinol oxidase of Escherichia coli eliminates proton-pumping activity. 1993

J W Thomas, and A Puustinen, and J O Alben, and R B Gennis, and M Wikström
School of Chemical Sciences, University of Illinois, Urbana 61801.

The terminal quinol oxidase, cytochrome bo, of Escherichia coli is a member of the large terminal oxidase family, which includes cytochrome aa3-type terminal oxidases from bacteria, plants, and animals. These enzymes conserve energy by linking electron transfer to vectorial proton translocation across mitochondrial or bacterial cell membranes. Site-directed mutagenesis of the five most highly conserved acidic amino acids in subunit I of cytochrome bo was performed to study their role in proton transfer. Mutation of only one of these sites, Asp135, to the corresponding amide, results in a dramatic decrease in proton pumping but with little change in electron-transfer activity. However, the conservative mutation Asp135Glu is active in proton translocation. It is proposed that an acidic residue at position 135 in subunit I may be important to form a functional proton input channel of the proton pump.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008961 Models, Structural A representation, generally small in scale, to show the structure, construction, or appearance of something. (From Random House Unabridged Dictionary, 2d ed) Model, Structural,Structural Model,Structural Models
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D003576 Electron Transport Complex IV A multisubunit enzyme complex containing CYTOCHROME A GROUP; CYTOCHROME A3; two copper atoms; and 13 different protein subunits. It is the terminal oxidase complex of the RESPIRATORY CHAIN and collects electrons that are transferred from the reduced CYTOCHROME C GROUP and donates them to molecular OXYGEN, which is then reduced to water. The redox reaction is simultaneously coupled to the transport of PROTONS across the inner mitochondrial membrane. Cytochrome Oxidase,Cytochrome aa3,Cytochrome-c Oxidase,Cytochrome Oxidase Subunit III,Cytochrome a,a3,Cytochrome c Oxidase Subunit VIa,Cytochrome-c Oxidase (Complex IV),Cytochrome-c Oxidase Subunit III,Cytochrome-c Oxidase Subunit IV,Ferrocytochrome c Oxygen Oxidoreductase,Heme aa3 Cytochrome Oxidase,Pre-CTOX p25,Signal Peptide p25-Subunit IV Cytochrome Oxidase,Subunit III, Cytochrome Oxidase,p25 Presequence Peptide-Cytochrome Oxidase,Cytochrome c Oxidase,Cytochrome c Oxidase Subunit III,Cytochrome c Oxidase Subunit IV,Oxidase, Cytochrome,Oxidase, Cytochrome-c,Signal Peptide p25 Subunit IV Cytochrome Oxidase,p25 Presequence Peptide Cytochrome Oxidase
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001216 Asparagine A non-essential amino acid that is involved in the metabolic control of cell functions in nerve and brain tissue. It is biosynthesized from ASPARTIC ACID and AMMONIA by asparagine synthetase. (From Concise Encyclopedia Biochemistry and Molecular Biology, 3rd ed) L-Asparagine

Related Publications

J W Thomas, and A Puustinen, and J O Alben, and R B Gennis, and M Wikström
February 1995, Seikagaku. The Journal of Japanese Biochemical Society,
J W Thomas, and A Puustinen, and J O Alben, and R B Gennis, and M Wikström
July 2009, Bioscience, biotechnology, and biochemistry,
J W Thomas, and A Puustinen, and J O Alben, and R B Gennis, and M Wikström
June 1997, The Journal of biological chemistry,
J W Thomas, and A Puustinen, and J O Alben, and R B Gennis, and M Wikström
March 1997, The EMBO journal,
J W Thomas, and A Puustinen, and J O Alben, and R B Gennis, and M Wikström
December 2009, Biochemistry,
J W Thomas, and A Puustinen, and J O Alben, and R B Gennis, and M Wikström
May 2019, Biochimie,
J W Thomas, and A Puustinen, and J O Alben, and R B Gennis, and M Wikström
September 2002, The Journal of biological chemistry,
J W Thomas, and A Puustinen, and J O Alben, and R B Gennis, and M Wikström
March 2019, Scientific reports,
J W Thomas, and A Puustinen, and J O Alben, and R B Gennis, and M Wikström
November 1987, European journal of biochemistry,
Copied contents to your clipboard!