Functional consequences of A1 adenosine-receptor phosphorylation by the beta-adrenergic receptor kinase. 1993

V Ramkumar, and M Kwatra, and J L Benovic, and G L Stiles, and G L Stilesa
Department of Medicine, Duke University Medical Center, Durham, NC 27710.

Treatment of smooth-muscle cells with R-phenylisopropyladenosine (R-PIA) leads to a loss of A1 adenosine receptor (A1AR)-mediated inhibition of adenylate cyclase, a decrease in receptor number and an increase in receptor phosphorylation. In this study, the role of the beta-adrenergic receptor kinase (beta ARK) in the phosphorylation and inactivation of the A1AR was examined. A1ARs were purified from bovine brain and reconstituted into phospholipid vesicles, with or without a 10-fold excess of Gi/Go (a 50:50 mixture). The reconstituted receptor preparations were phosphorylated with beta ARK in the absence (control) or presence (treated) of R-PIA. R-PIA stimulated A1AR phosphorylation by 2-3-fold over control. Phosphorylation of the A1AR was blocked by XAC, and A1AR antagonist, underscoring its agonist dependence. The stoichiometry of phosphorylation obtained was approx. 1.3 mol of phosphate per mol of A1AR. Phosphorylation of the A1AR by beta ARK was enhanced by an additional 42% when G beta gamma (30 nM) was included in the phosphorylation mixture. In order to test the role of phosphorylation on receptor function, the purified A1AR was reconstituted with a mixture of Gi/Go, phosphorylated with beta ARK and used to determine high-affinity [125I]APNEA (A1AR agonist) binding. Agonist binding was reduced by about 50% in the treated preparations compared to control. In contrast, antagonist ([3H]XAC) binding was increased by about 50%. These data are consistent with an uncoupling of the A1AR from G proteins following receptor phosphorylation. In control preparations, R-PIA stimulated GTPase activity from 0.08 to 0.164 pmol Pi released/pmol Gi/Go per min. Phosphorylation of receptor by beta ARK reduced R-PIA-stimulated GTPase activity by 35%. In addition, phosphorylation of the A1AR by beta ARK decreased R-PIA-stimulated GTP gamma S binding by 62%. These data provide evidence that A1AR phosphorylation by beta ARK results in a diminished receptor-G-protein interaction.

UI MeSH Term Description Entries
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D001923 Brain Chemistry Changes in the amounts of various chemicals (neurotransmitters, receptors, enzymes, and other metabolites) specific to the area of the central nervous system contained within the head. These are monitored over time, during sensory stimulation, or under different disease states. Chemistry, Brain,Brain Chemistries,Chemistries, Brain
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D016244 Guanosine 5'-O-(3-Thiotriphosphate) Guanosine 5'-(trihydrogen diphosphate), monoanhydride with phosphorothioic acid. A stable GTP analog which enjoys a variety of physiological actions such as stimulation of guanine nucleotide-binding proteins, phosphoinositide hydrolysis, cyclic AMP accumulation, and activation of specific proto-oncogenes. GTP gamma S,Guanosine 5'-(gamma-S)Triphosphate,gamma-Thio-GTP,GTPgammaS,Guanosine 5'-(3-O-Thio)Triphosphate,gamma S, GTP,gamma Thio GTP
D051552 beta-Adrenergic Receptor Kinases G-protein-coupled receptor kinases that mediate agonist-dependent PHOSPHORYLATION and desensitization of BETA-ADRENERGIC RECEPTORS. beta-Adrenergic Receptor Kinase,beta-AR Kinase,Receptor Kinase, beta-Adrenergic,Receptor Kinases, beta-Adrenergic,beta AR Kinase,beta Adrenergic Receptor Kinase,beta Adrenergic Receptor Kinases
D017868 Cyclic AMP-Dependent Protein Kinases A group of enzymes that are dependent on CYCLIC AMP and catalyze the phosphorylation of SERINE or THREONINE residues on proteins. Included under this category are two cyclic-AMP-dependent protein kinase subtypes, each of which is defined by its subunit composition. Adenosine Cyclic Monophosphate-Dependent Protein Kinases,Protein Kinase A,cAMP Protein Kinase,cAMP-Dependent Protein Kinases,Cyclic AMP-Dependent Protein Kinase,cAMP-Dependent Protein Kinase,Adenosine Cyclic Monophosphate Dependent Protein Kinases,Cyclic AMP Dependent Protein Kinase,Cyclic AMP Dependent Protein Kinases,Protein Kinase, cAMP,Protein Kinase, cAMP-Dependent,Protein Kinases, cAMP-Dependent,cAMP Dependent Protein Kinase,cAMP Dependent Protein Kinases
D018047 Receptors, Purinergic P1 A class of cell surface receptors that prefer ADENOSINE to other endogenous PURINES. Purinergic P1 receptors are widespread in the body including the cardiovascular, respiratory, immune, and nervous systems. There are at least two pharmacologically distinguishable types (A1 and A2, or Ri and Ra). Adenosine Receptors,P1 Purinoceptors,Purinergic P1 Receptors,Receptors, Adenosine,Adenosine Receptor,P1 Purinoceptor,Receptor, Purinergic P1,P1 Receptor, Purinergic,P1 Receptors, Purinergic,Purinergic P1 Receptor,Purinoceptor, P1,Purinoceptors, P1,Receptor, Adenosine
D019204 GTP-Binding Proteins Regulatory proteins that act as molecular switches. They control a wide range of biological processes including: receptor signaling, intracellular signal transduction pathways, and protein synthesis. Their activity is regulated by factors that control their ability to bind to and hydrolyze GTP to GDP. EC 3.6.1.-. G-Proteins,GTP-Regulatory Proteins,Guanine Nucleotide Regulatory Proteins,G-Protein,GTP-Binding Protein,GTP-Regulatory Protein,Guanine Nucleotide Coupling Protein,G Protein,G Proteins,GTP Binding Protein,GTP Binding Proteins,GTP Regulatory Protein,GTP Regulatory Proteins,Protein, GTP-Binding,Protein, GTP-Regulatory,Proteins, GTP-Binding,Proteins, GTP-Regulatory
D020558 GTP Phosphohydrolases Enzymes that hydrolyze GTP to GDP. EC 3.6.1.-. GTPase,GTPases,Guanosine Triphosphate Phosphohydrolases,Guanosinetriphosphatases,GTP Phosphohydrolase,Phosphohydrolase, GTP,Phosphohydrolases, GTP,Phosphohydrolases, Guanosine Triphosphate,Triphosphate Phosphohydrolases, Guanosine

Related Publications

V Ramkumar, and M Kwatra, and J L Benovic, and G L Stiles, and G L Stilesa
December 1987, The Journal of biological chemistry,
V Ramkumar, and M Kwatra, and J L Benovic, and G L Stiles, and G L Stilesa
January 1986, Nature,
V Ramkumar, and M Kwatra, and J L Benovic, and G L Stiles, and G L Stilesa
August 1995, The Journal of biological chemistry,
V Ramkumar, and M Kwatra, and J L Benovic, and G L Stiles, and G L Stilesa
December 1994, The American journal of physiology,
V Ramkumar, and M Kwatra, and J L Benovic, and G L Stiles, and G L Stilesa
May 1989, Biochemistry,
V Ramkumar, and M Kwatra, and J L Benovic, and G L Stiles, and G L Stilesa
July 1998, Molecular pharmacology,
V Ramkumar, and M Kwatra, and J L Benovic, and G L Stiles, and G L Stilesa
April 1994, FEBS letters,
V Ramkumar, and M Kwatra, and J L Benovic, and G L Stiles, and G L Stilesa
October 1995, The American journal of physiology,
V Ramkumar, and M Kwatra, and J L Benovic, and G L Stiles, and G L Stilesa
December 1993, FEBS letters,
V Ramkumar, and M Kwatra, and J L Benovic, and G L Stiles, and G L Stilesa
October 2016, Cellular signalling,
Copied contents to your clipboard!