Detection and reactions of the globin radical in haemoglobin. 1993

K M McArthur, and M J Davies
Department of Chemistry, University of York, UK.

The reaction of methaemoglobin with hydrogen peroxide and other oxidants has been studied using both electron paramagnetic resonance (EPR) and optical spectroscopy. The results obtained are consistent with the formation of an iron(IV)-oxo species (which is one oxidising equivalent above the initial level) and rapid transfer of the second oxidising equivalent into the surrounding globin generating a protein radical; this species has been observed by stopped-flow EPR. The partially resolved hyperfine splittings of the EPR signal (a2H 0.66, a2H 0.17, aH 1.157, aH 0.203 mT), together with its g value (2.0044) suggest that this species is a sterically-constrained tyrosine phenoxyl radical. Experiments with inhibitors and chemically-modified haemoglobins are in agreement with this assignment. This radical is not observed with the apoprotein or oxyhaemoglobin, confirming that the reaction requires the presence of an iron(III) haem. The concentration of the phenoxyl radical is not affected by hydroxyl-radical scavengers but is affected by certain reducing agents and antioxidants, demonstrating that the protein radical is accessible to reagents in bulk solution. Analysis of the protein structure suggests that this radical may be centered on the tyrosine at alpha-42 as this residue is in close proximity to the haem groups and partially exposed on the surface. Addition of the spin trap DMPO to the reaction system results in the observation of a broad, anisotropic, spectrum from a protein-derived spin adduct; this signal is assigned to a peroxyl radical adduct on the basis of the hyperfine coupling constants (aN 2.03, aH 1.4 mT), its short life-time, the detection of oxygen uptake, and the decrease in the intensity of this signal under anoxic conditions. Experiments with modified haemoproteins and inhibitors suggest that this species arises via the tyrosine phenoxyl radical. These observations suggest that the tyrosine residues act as a 'sink' for oxidising equivalents generated by electron-transfer within the protein after initial oxidation at the haem centre.

UI MeSH Term Description Entries
D008706 Methemoglobin Ferrihemoglobin
D008956 Models, Chemical Theoretical representations that simulate the behavior or activity of chemical processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Chemical Models,Chemical Model,Model, Chemical
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D010545 Peroxides A group of compounds that contain a bivalent O-O group, i.e., the oxygen atoms are univalent. They can either be inorganic or organic in nature. Such compounds release atomic (nascent) oxygen readily. Thus they are strong oxidizing agents and fire hazards when in contact with combustible materials, especially under high-temperature conditions. The chief industrial uses of peroxides are as oxidizing agents, bleaching agents, and initiators of polymerization. (From Hawley's Condensed Chemical Dictionary, 11th ed) Peroxide
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D003497 Cyclic N-Oxides Heterocyclic compounds in which an oxygen is attached to a cyclic nitrogen. Heterocyclic N-Oxides,Cyclic N Oxides,Heterocyclic N Oxides,N Oxides, Cyclic,N-Oxides, Cyclic,N-Oxides, Heterocyclic,Oxides, Cyclic N
D004578 Electron Spin Resonance Spectroscopy A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING. ENDOR,Electron Nuclear Double Resonance,Electron Paramagnetic Resonance,Paramagnetic Resonance,Electron Spin Resonance,Paramagnetic Resonance, Electron,Resonance, Electron Paramagnetic,Resonance, Electron Spin,Resonance, Paramagnetic
D005914 Globins A superfamily of proteins containing the globin fold which is composed of 6-8 alpha helices arranged in a characterstic HEME enclosing structure. Globin
D006454 Hemoglobins The oxygen-carrying proteins of ERYTHROCYTES. They are found in all vertebrates and some invertebrates. The number of globin subunits in the hemoglobin quaternary structure differs between species. Structures range from monomeric to a variety of multimeric arrangements. Eryhem,Ferrous Hemoglobin,Hemoglobin,Hemoglobin, Ferrous

Related Publications

K M McArthur, and M J Davies
April 2000, Journal of inorganic biochemistry,
K M McArthur, and M J Davies
August 1973, British journal of haematology,
K M McArthur, and M J Davies
July 1976, Australian journal of biological sciences,
K M McArthur, and M J Davies
January 1992, The Biochemical journal,
K M McArthur, and M J Davies
September 1968, British journal of haematology,
K M McArthur, and M J Davies
April 1954, Nature,
K M McArthur, and M J Davies
January 1997, Acta chirurgica Hungarica,
K M McArthur, and M J Davies
October 1972, Nature: New biology,
K M McArthur, and M J Davies
January 2021, Acta naturae,
Copied contents to your clipboard!