[Oxaloacetate-dependent calcium transport in rat liver mitochondria]. 1993

T V Zharova, and O V Tiulina

The effect of oxaloacetate on Ca2+ transport in isolated rat liver mitochondria has been studied. Under aerobic conditions in the presence of oxaloacetate mitochondria accumulate Ca2+ in a ruthenium red- and uncoupler-sensitive way. Oxaloacetate catalyzes also the slow (5 nM Ca2+/min/mg protein) uptake of limited amounts of calcium by the mitochondria in the presence of respiratory chain and ATPase inhibitors. Under these conditions ADP, pyruvate, succinate and isocitrate increase both the rate of oxaloacetate-dependent Ca2+ transport and the amount of the accumulated cation. In all cases studied (with the exception of isocitrate) the oxaloacetate-dependent Ca2+ uptake was blocked by low concentrations of arsenite. Oxaloacetate added to mitochondria in the presence of respiratory chain and ATPase inhibitors increases the [NAD+]. [NADPH]/[NADH].[NADP+] ratio and stimulates the transmembrane potential generation in the mitochondria. Ammonium chloride decreases the rates of the oxaloacetate-dependent Ca2+ uptake. The data obtained suggest that the oxaloacetate-dependent Ca2+ uptake by the mitochondria first demonstrated in this study is mediated by energy-dependent mitochondria transhydrogenase. These results are discussed in connection with oxaloacetate-induced Ca2+ release from mitochondria.

UI MeSH Term Description Entries
D008297 Male Males
D008930 Mitochondria, Liver Mitochondria in hepatocytes. As in all mitochondria, there are an outer membrane and an inner membrane, together creating two separate mitochondrial compartments: the internal matrix space and a much narrower intermembrane space. In the liver mitochondrion, an estimated 67% of the total mitochondrial proteins is located in the matrix. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p343-4) Liver Mitochondria,Liver Mitochondrion,Mitochondrion, Liver
D009243 NAD A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed) Coenzyme I,DPN,Diphosphopyridine Nucleotide,Nadide,Nicotinamide-Adenine Dinucleotide,Dihydronicotinamide Adenine Dinucleotide,NADH,Adenine Dinucleotide, Dihydronicotinamide,Dinucleotide, Dihydronicotinamide Adenine,Dinucleotide, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide,Nucleotide, Diphosphopyridine
D009249 NADP Nicotinamide adenine dinucleotide phosphate. A coenzyme composed of ribosylnicotinamide 5'-phosphate (NMN) coupled by pyrophosphate linkage to the 5'-phosphate adenosine 2',5'-bisphosphate. It serves as an electron carrier in a number of reactions, being alternately oxidized (NADP+) and reduced (NADPH). (Dorland, 27th ed) Coenzyme II,Nicotinamide-Adenine Dinucleotide Phosphate,Triphosphopyridine Nucleotide,NADPH,Dinucleotide Phosphate, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide Phosphate,Nucleotide, Triphosphopyridine,Phosphate, Nicotinamide-Adenine Dinucleotide
D010071 Oxaloacetates Derivatives of OXALOACETIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that include a 2-keto-1,4-carboxy aliphatic structure. Ketosuccinates,Oxosuccinates,Oxaloacetic Acids
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004579 Electron Transport The process by which ELECTRONS are transported from a reduced substrate to molecular OXYGEN. (From Bennington, Saunders Dictionary and Encyclopedia of Laboratory Medicine and Technology, 1984, p270) Respiratory Chain,Chain, Respiratory,Chains, Respiratory,Respiratory Chains,Transport, Electron
D000251 Adenosine Triphosphatases A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA. ATPases,Adenosinetriphosphatase,ATPase,ATPase, DNA-Dependent,Adenosine Triphosphatase,DNA-Dependent ATPase,DNA-Dependent Adenosinetriphosphatases,ATPase, DNA Dependent,Adenosinetriphosphatases, DNA-Dependent,DNA Dependent ATPase,DNA Dependent Adenosinetriphosphatases,Triphosphatase, Adenosine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic

Related Publications

T V Zharova, and O V Tiulina
June 1978, FEBS letters,
T V Zharova, and O V Tiulina
March 1999, Plant physiology,
T V Zharova, and O V Tiulina
January 1978, Izvestiia Akademii nauk SSSR. Seriia biologicheskaia,
T V Zharova, and O V Tiulina
January 1978, Biology bulletin of the Academy of Sciences of the USSR. Akademiia nauk SSSR,
T V Zharova, and O V Tiulina
August 1988, Biochemistry international,
T V Zharova, and O V Tiulina
April 1977, Archives of biochemistry and biophysics,
T V Zharova, and O V Tiulina
May 1985, Biochemical and biophysical research communications,
T V Zharova, and O V Tiulina
January 1971, Biochimica et biophysica acta,
T V Zharova, and O V Tiulina
May 1988, Plant physiology,
T V Zharova, and O V Tiulina
February 1973, Biochemistry,
Copied contents to your clipboard!