Evidence of differential cisplatin-DNA adduct formation, removal and tolerance of DNA damage in three human lung carcinoma cell lines. 1993

S A Shellard, and A M Fichtinger-Schepman, and J S Lazo, and B T Hill
Laboratory of Cellular Chemotherapy, Imperial Cancer Research Fund, London, UK.

The expression of intrinsic resistance to cisplatin in two lung cancer cell lines, one derived from a small cell carcinoma (SW1271) and the other from an adenocarcinoma (A549), relative to a drug-sensitive small cell line SW900, was characterized by: (i) expression of cross-resistance to mitomycin C and cadmium chloride, but increased sensitivity to adriamycin and etoposide; (ii) significantly decreased cisplatin uptake; (iii) elevated levels of glutathione which could be reduced by buthionine L-sulfoximine resulting in significant sensitization of the cells to cisplatin; (iv) a lack of consistent modification of metallothionein content and expression of levels of glutathione S-transferase, glutathione reductase and glutathione peroxidase or of activities of DT-diaphorase or catalase; (v) significantly reduced total DNA-platination levels immediately following a 1 h cisplatin treatment with 10 micrograms/ml (33.3 microM); (vi) increased removal of Pt-GG and Pt-AG adducts by the A549 cells, consistent with increased repair capacity, but a lack of removal of these major adducts by the SW1271 cells indicative of tolerance of this drug-induced DNA damage. These data therefore provide evidence of differential formation, repair and tolerance of DNA damage following exposure of three human lung carcinoma cell lines to cisplatin.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008175 Lung Neoplasms Tumors or cancer of the LUNG. Cancer of Lung,Lung Cancer,Pulmonary Cancer,Pulmonary Neoplasms,Cancer of the Lung,Neoplasms, Lung,Neoplasms, Pulmonary,Cancer, Lung,Cancer, Pulmonary,Cancers, Lung,Cancers, Pulmonary,Lung Cancers,Lung Neoplasm,Neoplasm, Lung,Neoplasm, Pulmonary,Pulmonary Cancers,Pulmonary Neoplasm
D008668 Metallothionein A low-molecular-weight (approx. 10 kD) protein occurring in the cytoplasm of kidney cortex and liver. It is rich in cysteinyl residues and contains no aromatic amino acids. Metallothionein shows high affinity for bivalent heavy metals. Isometallothionein,Metallothionein A,Metallothionein B,Metallothionein I,Metallothionein II,Metallothionein IIA
D002374 Catalase An oxidoreductase that catalyzes the conversion of HYDROGEN PEROXIDE to water and oxygen. It is present in many animal cells. A deficiency of this enzyme results in ACATALASIA. Catalase A,Catalase T,Manganese Catalase,Mn Catalase
D002945 Cisplatin An inorganic and water-soluble platinum complex. After undergoing hydrolysis, it reacts with DNA to produce both intra and interstrand crosslinks. These crosslinks appear to impair replication and transcription of DNA. The cytotoxicity of cisplatin correlates with cellular arrest in the G2 phase of the cell cycle. Platinum Diamminodichloride,cis-Diamminedichloroplatinum(II),cis-Dichlorodiammineplatinum(II),Biocisplatinum,Dichlorodiammineplatinum,NSC-119875,Platidiam,Platino,Platinol,cis-Diamminedichloroplatinum,cis-Platinum,Diamminodichloride, Platinum,cis Diamminedichloroplatinum,cis Platinum
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D004273 DNA, Neoplasm DNA present in neoplastic tissue. Neoplasm DNA
D004351 Drug Resistance Diminished or failed response of an organism, disease or tissue to the intended effectiveness of a chemical or drug. It should be differentiated from DRUG TOLERANCE which is the progressive diminution of the susceptibility of a human or animal to the effects of a drug, as a result of continued administration. Resistance, Drug

Related Publications

S A Shellard, and A M Fichtinger-Schepman, and J S Lazo, and B T Hill
February 1994, Biochemical pharmacology,
S A Shellard, and A M Fichtinger-Schepman, and J S Lazo, and B T Hill
July 1996, Experimental cell research,
S A Shellard, and A M Fichtinger-Schepman, and J S Lazo, and B T Hill
January 2000, Cancer chemotherapy and pharmacology,
S A Shellard, and A M Fichtinger-Schepman, and J S Lazo, and B T Hill
January 2019, Nuclear instruments & methods in physics research. Section B, Beam interactions with materials and atoms,
S A Shellard, and A M Fichtinger-Schepman, and J S Lazo, and B T Hill
March 1998, International journal of molecular medicine,
S A Shellard, and A M Fichtinger-Schepman, and J S Lazo, and B T Hill
June 1995, Cancer research,
S A Shellard, and A M Fichtinger-Schepman, and J S Lazo, and B T Hill
January 1996, Mutation research,
S A Shellard, and A M Fichtinger-Schepman, and J S Lazo, and B T Hill
January 1998, European journal of cancer (Oxford, England : 1990),
Copied contents to your clipboard!