Neuroanatomical differentiation in the brain of the spontaneously hypertensive rat (SHR). I. Volumetric comparisons with WKY control. 1993

D K Nelson, and R L Coulson, and J H Myers, and R A Browning
Department of Physiology, Southern Illinois University School of Medicine, Carbondale 62901.

A series of measurements was made to assess the morphology of the brain of the spontaneously hypertensive rat (SHR). The SHR brain was smaller than that of age-matched normotensive Wistar-Kyoto (WKY) controls in a majority of measures of external surface landmarks. This reduction in size was evident in the youngest age group examined (94 days) and persisted in older groups (170, 240 and 350 days). The brain of the SHR was also smaller in terms of brain weight and brain weight:body weight ratios. Section-by-section digitized analyses of coronal histologic sections from 94-day-old rats revealed significant reductions in mean cross-sectional area and volume of midbrain/pons (10%) and hindbrain (11%) regions, but not of forebrain, in the SHR. Alterations in the mediolateral dimension, particularly within the pontomedullary brainstem, accounted for more of these volumetric changes than those in the dorsoventral dimension. Using the same coronal sections, it was found that surface areas and volumes of five individual nuclei/fiber tracts, selected for their involvement in central cardiovascular regulation, were significantly decreased in the SHR. The largest reduction in volume (30%) was found in the nucleus tractus solitarius, the primary site of termination of afferent baroreceptor fibers. No differences in surface area or volume were found in that portion of the cerebroventricular system (aqueduct of Sylvius) associated with the periventricular grey region, or in the inferior colliculus, which is not thought to be involved in cardiovascular control. These observations not only have practical implications, but suggest that the pathophysiological condition expressed as spontaneous hypertension in this widely-used model may be related to morphological alterations in the central nervous system.

UI MeSH Term Description Entries
D006973 Hypertension Persistently high systemic arterial BLOOD PRESSURE. Based on multiple readings (BLOOD PRESSURE DETERMINATION), hypertension is currently defined as when SYSTOLIC PRESSURE is consistently greater than 140 mm Hg or when DIASTOLIC PRESSURE is consistently 90 mm Hg or more. Blood Pressure, High,Blood Pressures, High,High Blood Pressure,High Blood Pressures
D008297 Male Males
D008636 Mesencephalon The middle of the three primitive cerebral vesicles of the embryonic brain. Without further subdivision, midbrain develops into a short, constricted portion connecting the PONS and the DIENCEPHALON. Midbrain contains two major parts, the dorsal TECTUM MESENCEPHALI and the ventral TEGMENTUM MESENCEPHALI, housing components of auditory, visual, and other sensorimoter systems. Midbrain,Mesencephalons,Midbrains
D009929 Organ Size The measurement of an organ in volume, mass, or heaviness. Organ Volume,Organ Weight,Size, Organ,Weight, Organ
D011149 Pons The front part of the hindbrain (RHOMBENCEPHALON) that lies between the MEDULLA and the midbrain (MESENCEPHALON) ventral to the cerebellum. It is composed of two parts, the dorsal and the ventral. The pons serves as a relay station for neural pathways between the CEREBELLUM to the CEREBRUM. Pons Varolii,Ponte,Pons Varolius,Pontes,Varolii, Pons,Varolius, Pons
D011918 Rats, Inbred SHR A strain of Rattus norvegicus with elevated blood pressure used as a model for studying hypertension and stroke. Rats, Spontaneously Hypertensive,Rats, SHR,Inbred SHR Rat,Inbred SHR Rats,Rat, Inbred SHR,Rat, SHR,Rat, Spontaneously Hypertensive,SHR Rat,SHR Rat, Inbred,SHR Rats,SHR Rats, Inbred,Spontaneously Hypertensive Rat,Spontaneously Hypertensive Rats
D011921 Rats, Inbred WKY A strain of Rattus norvegicus used as a normotensive control for the spontaneous hypertensive rats (SHR). Rats, Wistar Kyoto,Wistar Kyoto Rat,Rats, WKY,Inbred WKY Rat,Inbred WKY Rats,Kyoto Rat, Wistar,Rat, Inbred WKY,Rat, WKY,Rat, Wistar Kyoto,WKY Rat,WKY Rat, Inbred,WKY Rats,WKY Rats, Inbred,Wistar Kyoto Rats
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012249 Rhombencephalon The posterior of the three primitive cerebral vesicles of an embryonic brain. It consists of myelencephalon, metencephalon, and isthmus rhombencephali from which develop the major BRAIN STEM components, such as MEDULLA OBLONGATA from the myelencephalon, CEREBELLUM and PONS from the metencephalon, with the expanded cavity forming the FOURTH VENTRICLE. Hindbrain,Hind Brain,Brain, Hind,Brains, Hind,Hind Brains,Hindbrains,Rhombencephalons

Related Publications

D K Nelson, and R L Coulson, and J H Myers, and R A Browning
December 1981, Brain research,
D K Nelson, and R L Coulson, and J H Myers, and R A Browning
August 1990, Journal of developmental physiology,
D K Nelson, and R L Coulson, and J H Myers, and R A Browning
April 1985, Brain research,
D K Nelson, and R L Coulson, and J H Myers, and R A Browning
December 2020, Behavioural processes,
D K Nelson, and R L Coulson, and J H Myers, and R A Browning
December 1991, Brain research bulletin,
D K Nelson, and R L Coulson, and J H Myers, and R A Browning
October 1983, Journal of hypertension,
D K Nelson, and R L Coulson, and J H Myers, and R A Browning
March 1985, Behavioral and neural biology,
D K Nelson, and R L Coulson, and J H Myers, and R A Browning
February 1975, Endocrinology,
D K Nelson, and R L Coulson, and J H Myers, and R A Browning
September 1996, Physiology & behavior,
D K Nelson, and R L Coulson, and J H Myers, and R A Browning
May 1990, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
Copied contents to your clipboard!