Selective reduction of N-methyl-D-aspartate-evoked responses by 1,3-di(2-tolyl)guanidine in mouse and rat cultured hippocampal pyramidal neurones. 1993

E J Fletcher, and J Church, and K Abdel-Hamid, and J F MacDonald
Department of Physiology, University of Toronto, Ontario, Canada.

1. The effects of 1,3-di(2-tolyl)guanidine (DTG) were examined on the responses of cultured hippocampal neurones to the excitatory amino acid analogues N-methyl-D-aspartate (NMDA), kainate, quisqualate and (RS)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA). 2. In rat hippocampal neurones loaded with the Ca(2+)-sensitive dye Fura-2, DTG (10-100 microM) produced a concentration-dependent depression of the NMDA-evoked rises in intracellular free calcium ([Ca2+]i), an effect that was not modified by changes in the extracellular glycine concentration. DTG (at 50 and 100 microM) also attenuated, although to a lesser extent, the rises in [Ca2+]i evoked by naturally-derived quisqualate. In contrast, 50 and 100 microM DTG did not depress responses evoked by kainate, AMPA and synthetic, glutamate-free (+)-quisqualate although on occasions DTG enhanced kainate- and AMPA-evoked rises in [Ca2+]i. 3. DTG attenuated NMDA-evoked currents recorded from mouse hippocampal neurones under whole-cell voltage-clamp with an IC50 (mean +/- s.e. mean) of 37 +/- 5 microM at a holding potential of -60 mV. The DTG block of NMDA-evoked responses was not competitive in nature and was not dependent on the extracellular glycine or spermine concentration. The block did, however, exhibit both voltage-, and use-, dependency. The steady-state current evoked by naturally-derived quisqualate was also attenuated by DTG whereas those evoked by kainate and AMPA were not. 4. We conclude that DTG, applied at micromolar concentrations, is a selective NMDA antagonist in cultured hippocampal neurones, the block exhibiting both Mg(2+)- and phencyclidine-like characteristics. Given the nanomolar affinity of DTG for sigma binding sites it is unlikely that the antagonism observed here is mediated by sigma-receptors, but the data emphasize the potential danger of ascribing the functional consequences of DTG administration solely to sigma receptor-mediated events.

UI MeSH Term Description Entries
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D011712 Pyramidal Tracts Fibers that arise from cells within the cerebral cortex, pass through the medullary pyramid, and descend in the spinal cord. Many authorities say the pyramidal tracts include both the corticospinal and corticobulbar tracts. Corticobulbar Tracts,Corticospinal Tracts,Decussation, Pyramidal,Corticobulbar Tract,Corticospinal Tract,Pyramidal Decussation,Pyramidal Tract,Tract, Corticobulbar,Tract, Corticospinal,Tract, Pyramidal,Tracts, Corticobulbar,Tracts, Corticospinal,Tracts, Pyramidal
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D005071 Evoked Potentials Electrical responses recorded from nerve, muscle, SENSORY RECEPTOR, or area of the CENTRAL NERVOUS SYSTEM following stimulation. They range from less than a microvolt to several microvolts. The evoked potential can be auditory (EVOKED POTENTIALS, AUDITORY), somatosensory (EVOKED POTENTIALS, SOMATOSENSORY), visual (EVOKED POTENTIALS, VISUAL), or motor (EVOKED POTENTIALS, MOTOR), or other modalities that have been reported. Event Related Potential,Event-Related Potentials,Evoked Potential,N100 Evoked Potential,P50 Evoked Potential,N1 Wave,N100 Evoked Potentials,N2 Wave,N200 Evoked Potentials,N3 Wave,N300 Evoked Potentials,N4 Wave,N400 Evoked Potentials,P2 Wave,P200 Evoked Potentials,P50 Evoked Potentials,P50 Wave,P600 Evoked Potentials,Potentials, Event-Related,Event Related Potentials,Event-Related Potential,Evoked Potential, N100,Evoked Potential, N200,Evoked Potential, N300,Evoked Potential, N400,Evoked Potential, P200,Evoked Potential, P50,Evoked Potential, P600,Evoked Potentials, N100,Evoked Potentials, N200,Evoked Potentials, N300,Evoked Potentials, N400,Evoked Potentials, P200,Evoked Potentials, P50,Evoked Potentials, P600,N1 Waves,N2 Waves,N200 Evoked Potential,N3 Waves,N300 Evoked Potential,N4 Waves,N400 Evoked Potential,P2 Waves,P200 Evoked Potential,P50 Waves,P600 Evoked Potential,Potential, Event Related,Potential, Event-Related,Potential, Evoked,Potentials, Event Related,Potentials, Evoked,Potentials, N400 Evoked,Related Potential, Event,Related Potentials, Event,Wave, N1,Wave, N2,Wave, N3,Wave, N4,Wave, P2,Wave, P50,Waves, N1,Waves, N2,Waves, N3,Waves, N4,Waves, P2,Waves, P50
D005260 Female Females
D006146 Guanidines A family of iminourea derivatives. The parent compound has been isolated from mushrooms, corn germ, rice hulls, mussels, earthworms, and turnip juice. Derivatives may have antiviral and antifungal properties.

Related Publications

E J Fletcher, and J Church, and K Abdel-Hamid, and J F MacDonald
October 1993, The Journal of physiology,
E J Fletcher, and J Church, and K Abdel-Hamid, and J F MacDonald
November 1990, Journal of neurophysiology,
E J Fletcher, and J Church, and K Abdel-Hamid, and J F MacDonald
September 1995, British journal of pharmacology,
E J Fletcher, and J Church, and K Abdel-Hamid, and J F MacDonald
March 1997, Toxicon : official journal of the International Society on Toxinology,
E J Fletcher, and J Church, and K Abdel-Hamid, and J F MacDonald
March 1989, Neuropharmacology,
E J Fletcher, and J Church, and K Abdel-Hamid, and J F MacDonald
May 1991, The Journal of physiology,
E J Fletcher, and J Church, and K Abdel-Hamid, and J F MacDonald
January 2003, Physiological research,
E J Fletcher, and J Church, and K Abdel-Hamid, and J F MacDonald
September 1990, The Journal of physiology,
Copied contents to your clipboard!