Bacteriophage T4 Alc protein: a transcription termination factor sensing local modification of DNA. 1993

M Kashlev, and E Nudler, and A Goldfarb, and T White, and E Kutter
Public Health Research Institute, New York, New York 10016.

Bacteriophage T4 Alc protein participates in shutting off host transcription after infection of E. coli. It is demonstrated that Alc acts as a site-specific termination factor. The Alc sites occur frequently in E. coli DNA, resulting in early cessation of elongation in several tested transcription units. Alc-dependent termination requires unimpeded propagation of the elongating complex as it approaches the Alc site. Temporary halting of RNA polymerase within 10-15 bp before the Alc site prevents termination. Bacteriophage T4 transcription is protected from the action of Alc by overall substitution of cytosine with 5-hydroxymethyl cytosine in T4 DNA. In vitro methylation of CpG sequences in the vicinity of an Alc site abolishes the effect of Alc. Thus, Alc-dependent termination involves local sensing of the state of cytosine modification and a short-term "memory" of recent pausing.

UI MeSH Term Description Entries
D008745 Methylation Addition of methyl groups. In histo-chemistry methylation is used to esterify carboxyl groups and remove sulfate groups by treating tissue sections with hot methanol in the presence of hydrochloric acid. (From Stedman, 25th ed) Methylations
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009838 Oligodeoxyribonucleotides A group of deoxyribonucleotides (up to 12) in which the phosphate residues of each deoxyribonucleotide act as bridges in forming diester linkages between the deoxyribose moieties. Oligodeoxynucleotide,Oligodeoxyribonucleotide,Oligodeoxynucleotides
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012321 DNA-Directed RNA Polymerases Enzymes that catalyze DNA template-directed extension of the 3'-end of an RNA strand one nucleotide at a time. They can initiate a chain de novo. In eukaryotes, three forms of the enzyme have been distinguished on the basis of sensitivity to alpha-amanitin, and the type of RNA synthesized. (From Enzyme Nomenclature, 1992). DNA-Dependent RNA Polymerases,RNA Polymerases,Transcriptases,DNA-Directed RNA Polymerase,RNA Polymerase,Transcriptase,DNA Dependent RNA Polymerases,DNA Directed RNA Polymerase,DNA Directed RNA Polymerases,Polymerase, DNA-Directed RNA,Polymerase, RNA,Polymerases, DNA-Dependent RNA,Polymerases, DNA-Directed RNA,Polymerases, RNA,RNA Polymerase, DNA-Directed,RNA Polymerases, DNA-Dependent,RNA Polymerases, DNA-Directed
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities
D013698 Templates, Genetic Macromolecular molds for the synthesis of complementary macromolecules, as in DNA REPLICATION; GENETIC TRANSCRIPTION of DNA to RNA, and GENETIC TRANSLATION of RNA into POLYPEPTIDES. Genetic Template,Genetic Templates,Template, Genetic
D013728 Terminator Regions, Genetic DNA sequences recognized as signals to end GENETIC TRANSCRIPTION. Terminator Sequence,Transcriptional Terminator Regions,Terminator Regions,Genetic Terminator Region,Genetic Terminator Regions,Region, Genetic Terminator,Region, Terminator,Region, Transcriptional Terminator,Regions, Genetic Terminator,Regions, Terminator,Regions, Transcriptional Terminator,Sequence, Terminator,Sequences, Terminator,Terminator Region,Terminator Region, Genetic,Terminator Region, Transcriptional,Terminator Regions, Transcriptional,Terminator Sequences,Transcriptional Terminator Region

Related Publications

M Kashlev, and E Nudler, and A Goldfarb, and T White, and E Kutter
December 1981, Journal of virology,
M Kashlev, and E Nudler, and A Goldfarb, and T White, and E Kutter
May 1990, Journal of bacteriology,
M Kashlev, and E Nudler, and A Goldfarb, and T White, and E Kutter
October 1984, Genetics,
M Kashlev, and E Nudler, and A Goldfarb, and T White, and E Kutter
November 1992, Journal of molecular biology,
M Kashlev, and E Nudler, and A Goldfarb, and T White, and E Kutter
December 1986, Journal of virology,
M Kashlev, and E Nudler, and A Goldfarb, and T White, and E Kutter
January 2003, Methods in enzymology,
M Kashlev, and E Nudler, and A Goldfarb, and T White, and E Kutter
May 1987, Journal of virology,
M Kashlev, and E Nudler, and A Goldfarb, and T White, and E Kutter
July 1980, Journal of virology,
M Kashlev, and E Nudler, and A Goldfarb, and T White, and E Kutter
June 2015, mBio,
M Kashlev, and E Nudler, and A Goldfarb, and T White, and E Kutter
October 1984, Genetics,
Copied contents to your clipboard!